Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "tree packing" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
2-placement of (p,q)-trees
Autorzy:
Orchel, Beata
Powiązania:
https://bibliotekanauki.pl/articles/743376.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
tree
bipartite graph
packing graph
Opis:
Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1.
Let G = (L,R;E) and H = (L',R';E') be two (p,q)-tree. A bijection f:L ∪ R → L' ∪ R' is said to be a biplacement of G and H if f(L) = L' and f(x)f(y) ∉ E' for every edge xy of G. A biplacement of G and its copy is called 2-placement of G. A bipartite graph G is 2-placeable if G has a 2-placement. In this paper we give all (p,q)-trees which are not 2-placeable.
Źródło:
Discussiones Mathematicae Graph Theory; 2003, 23, 1; 23-36
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs that are Critical for the Packing Chromatic Number
Autorzy:
Brešar, Boštjan
Ferme, Jasmina
Powiązania:
https://bibliotekanauki.pl/articles/32318620.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
packing coloring
critical graph
diameter
block graph
tree
Opis:
Given a graph G, a coloring c : V (G) → {1, …, k} such that c(u) = c(v) = i implies that vertices u and v are at distance greater than i, is called a packing coloring of G. The minimum number of colors in a packing coloring of G is called the packing chromatic number of G, and is denoted by χρ(G). In this paper, we propose the study of χρ-critical graphs, which are the graphs G such that for any proper subgraph H of G, χρ(H) < χρ(G). We characterize χρ-critical graphs with diameter 2, and χρ-critical block graphs with diameter 3. Furthermore, we characterize χρ-critical graphs with small packing chromatic number, and we also consider χρ-critical trees. In addition, we prove that for any graph G and every edge e ∈ E(G), we have (χρ(G)+1)/2 ≤ χρ(G−e) ≤ χρ(G), and provide a corresponding realization result, which shows that χρ(G − e) can achieve any of the integers between these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 569-589
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies