Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "domination number" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Bounds on the Locating Roman Domination Number in Trees
Autorzy:
Jafari Rad, Nader
Rahbani, Hadi
Powiązania:
https://bibliotekanauki.pl/articles/16647912.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination number
locating domination number
locating Roman domination number
tree
Opis:
A Roman dominating function (or just RDF) on a graph G = (V, E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = ∑u∈V(G) f(u). An RDF f can be represented as f = (V0, V1, V2), where Vi = {v ∈ V : f(v) = i} for i = 0, 1, 2. An RDF f = (V0, V1, V2) is called a locating Roman dominating function (or just LRDF) if N(u) ∩ V2 ≠ N(v) ∩ V2 for any pair u, v of distinct vertices of V0. The locating Roman domination number $\gamma _R^L (G)$ is the minimum weight of an LRDF of G. In this paper, we study the locating Roman domination number in trees. We obtain lower and upper bounds for the locating Roman domination number of a tree in terms of its order and the number of leaves and support vertices, and characterize trees achieving equality for the bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 49-62
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating Roman Domination Number in Trees
Autorzy:
Jafari Rad, Nader
Rahbani, Hadi
Powiązania:
https://bibliotekanauki.pl/articles/31342446.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination number
locating domination number
locating Roman domination number
tree
Opis:
A Roman dominating function (or just RDF) on a graph $ G = (V, E) $ is a function $ f : V \rightarrow \{ 0, 1, 2 \} $ satisfying the condition that every vertex $u$ for which $ f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. The weight of an RDF $f$ is the value $ f(V (G)) = \Sigma_{ u \in V (G) } f(u) $. An RDF $f$ can be represented as $ f = (V_0, V_1, V_2) $, where $ V_i = \{ v \in V : f(v) = i \} $ for $ i = 0, 1, 2 $. An RDF $ f = (V_0, V_1, V_2) $ is called a locating Roman dominating function (or just LRDF) if $ N(u) \cap V_2 \ne N(v) \cap V_2 $ for any pair $u$, $v$ of distinct vertices of $ V_0 $. The locating Roman domination number $ \gamma_R^L (G) $ is the minimum weight of an LRDF of $G$. In this paper, we study the locating Roman domination number in trees. We obtain lower and upper bounds for the locating Roman domination number of a tree in terms of its order and the number of leaves and support vertices, and characterize trees achieving equality for the bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 49-62
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Accurate Domination in Graphs
Autorzy:
Cyman, Joanna
Henning, Michael A.
Topp, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/31343372.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
accurate domination number
tree
corona
Opis:
A dominating set of a graph G is a subset D ⊆ VG such that every vertex not in D is adjacent to at least one vertex in D. The cardinality of a smallest dominating set of G, denoted by γ(G), is the domination number of G. The accurate domination number of G, denoted by γa(G), is the cardinality of a smallest set D that is a dominating set of G and no |D|-element subset of VG \ D is a dominating set of G. We study graphs for which the accurate domination number is equal to the domination number. In particular, all trees G for which γa(G) = γ(G) are characterized. Furthermore, we compare the accurate domination number with the domination number of different coronas of a graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 615-627
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trees with equal total domination and total restrained domination numbers
Autorzy:
Chen, Xue-Gang
Shiu, Wai
Chen, Hong-Yu
Powiązania:
https://bibliotekanauki.pl/articles/743513.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total domination number
total restrained domination number
tree
Opis:
For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both ⟨S⟩ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and ⟨V(G)-S⟩ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained domination numbers are the same.
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 1; 59-66
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lower bound on the domination number of a tree
Autorzy:
Lemańska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/744457.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination number
tree
Opis:
>We prove that the domination number γ(T) of a tree T on n ≥ 3 vertices and with n₁ endvertices satisfies inequality γ(T) ≥ (n+2-n₁)/3 and we characterize the extremal graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 165-169
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weakly connected domination critical graphs
Autorzy:
Lemańska, M.
Patyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/255051.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
weakly connected domination number
tree
critical graphs
Opis:
A dominating set D ⊂ V(G) is a weakly connected dominating set in G if the subgraph G[D]w = (NG[D], Ew) weakly induced by D is connected, where Ew is the set of all edges with at least one vertex in D. The weakly connected domination number ϒw(G) of a graph G is the minimum cardinality among all weakly connected dominating sets in G. The graph is said to be weakly connected domination critical (ϒw-critical) if for each u, v ∈ V(G) with v not adjacent to u, ϒw(G + vu) < ϒw(G). Further, G is k- ϒw-critical if ϒw(G) = k and for each edge e ∉ E(G), ϒw(G + e) < k. In this paper we consider weakly connected domination critical graphs and give some properties of 3-ϒw,-critical graphs.
Źródło:
Opuscula Mathematica; 2008, 28, 3; 325-330
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating-Total Domination Number in Trees
Autorzy:
Wang, Kun
Ning, Wenjie
Lu, Mei
Powiązania:
https://bibliotekanauki.pl/articles/31867549.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
tree
total dominating set
locating-total dominating set
locating-total domination number
Opis:
Given a graph $G = (V, E)$ with no isolated vertex, a subset $S$ of $V$ is called a total dominating set of $G$ if every vertex in $V$ has a neighbor in $S$. A total dominating set $S$ is called a locating-total dominating set if for each pair of distinct vertices $u$ and $v$ in $V \ S, N(u) ∩ S ≠ N(v) ∩ S$. The minimum cardinality of a locating-total dominating set of $G$ is the locating-total domination number, denoted by $γ_t^L(G)$. We show that, for a tree $T$ of order $n ≥ 3$ and diameter $d$, \(\frac{d+1}{2}≤γ_t^L(T)≤n−\frac{d−1}{2}\), and if $T$ has $l$ leaves, $s$ support vertices and $s_1$ strong support vertices, then \(γ_t^L(T)≥max\Big\{\frac{n+l−s+1}{2}−\frac{s+s_1}{4},\frac{2(n+1)+3(l−s)−s_1}{5}\Big\}\). We also characterize the extremal trees achieving these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 25-34
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies