Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uczenie głębokie." wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on visual cues
Autorzy:
Jadhav, Nagesh
Sugandhi, Rekha
Powiązania:
https://bibliotekanauki.pl/articles/2086876.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
convolution neural network
emotion recognition
transfer learning
late fusion
uczenie głębokie
konwolucyjna sieć neuronowa
rozpoznawanie emocji
Opis:
In the domain of affective computing different emotional expressions play an important role. To convey the emotional state of human emotions, facial expressions or visual cues are used as an important and primary cue. The facial expressions convey humans affective state more convincingly than any other cues. With the advancement in the deep learning techniques, the convolutional neural network (CNN) can be used to automatically extract the features from the visual cues; however variable sized and biased datasets are a vital challenge to be dealt with as far as implementation of deep models is concerned. Also, the dataset used for training the model plays a significant role in the retrieved results. In this paper, we have proposed a multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on the visual cues. We have used a CNN and pre-trained ResNet-50 model for the transfer learning. VGGFace model’s weights are used to initialize weights of ResNet50 for fine-tuning the model. The proposed system shows significant improvement in test accuracy in affective state recognition compared to the singleton CNN model developed from scratch or transfer learned model. The proposed methodology is validated on The Karolinska Directed Emotional Faces (KDEF) dataset with 77.85% accuracy. The obtained results are promising compared to the existing state of the art methods.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138819, 1--11
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2173603.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; art. no. e136737
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected technical issues of deep neural networks for image classification purposes
Autorzy:
Grochowski, Michał
Kwasigroch, A.
Mikołajczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/200871.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep neural network
deep learning
image classification
batch normalization
transfer learning
dropout
sieć neuronowa
klasyfikacja obrazów
normalizacja
transfer nauki
uczenie głębokie
Opis:
In recent years, deep learning and especially deep neural networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the convolutional neural networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good generalization abilities. Therefore, a number of methods have been proposed by the researchers to deal with these problems. In this paper, we present the results of applying different, recently developed methods to improve deep neural network training and operating. We decided to focus on the most popular CNN structures, namely on VGG based neural networks: VGG16, VGG11 and proposed by us VGG8. The tests were conducted on a real and very important problem of skin cancer detection. A publicly available dataset of skin lesions was used as a benchmark. We analyzed the influence of applying: dropout, batch normalization, model ensembling, and transfer learning. Moreover, the influence of the type of activation function was checked. In order to increase the objectivity of the results, each of the tested models was trained 6 times and their results were averaged. In addition, in order to mitigate the impact of the selection of learning, test and validation sets, k-fold validation was applied.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 2; 363-376
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep adversarial neural network for specific emitter identification under varying frequency
Autorzy:
Huang, Keju
Yang, Junan
Liu, Hui
Hu, Pengjiang
Powiązania:
https://bibliotekanauki.pl/articles/2128144.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specific emitter identification
unsupervised domain adaptation
transfer learning
deep learning
identyfikacja emitera konkretna
adaptacja domeny nienadzorowana
transfer uczenia się
uczenie głębokie
Opis:
Specific emitter identification (SEI) is the process of identifying individual emitters by analyzing the radio frequency emissions, based on the fact that each device contains unique hardware imperfections. While the majority of previous research focuses on obtaining features that are discriminative, the reliability of the features is rarely considered. For example, since device characteristics of the same emitter vary when it is operating at different carrier frequencies, the performance of SEI approaches may degrade when the training data and the test data are collected from the same emitters with different frequencies. To improve performance of SEI under varying frequency, we propose an approach based on continuous wavelet transform (CWT) and domain adversarial neural network (DANN). The proposed approach exploits unlabeled test data in addition to labeled training data, in order to learn representations that are discriminative for individual emitters and invariant for varying frequencies. Experiments are conducted on received signals of five emitters under three carrier frequencies. The results demonstrate the superior performance of the proposed approach when the carrier frequencies of the training data and the test data differ.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 2; e136737, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystywanie programów uczenia w głębokim uczeniu przez wzmacnianie. O istocie rozpoczynania od rzeczy małych
Using Training Curriculum with Deep Reinforcement Learning. On the Importance of Starting Small
Autorzy:
KOZIARSKI, MICHAŁ
KWATER, KRZYSZTOF
WOŹNIAK, MICHAŁ
Powiązania:
https://bibliotekanauki.pl/articles/456567.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Rzeszowski
Tematy:
głębokie uczenie przez wzmacnianie
uczenie przez transfer
uczenie się przez całe życie
proces uczenia
deep reinforcement learning
transfer learning
lifelong learning,
curriculum learning
Opis:
Algorytmy uczenia się przez wzmacnianie są wykorzystywane do rozwiązywania problemów o stale rosnącym poziomie złożoności. W wyniku tego proces uczenia zyskuje na złożoności i wy-maga większej mocy obliczeniowej. Wykorzystanie uczenia z przeniesieniem wiedzy może czę-ściowo ograniczyć ten problem. W artykule wprowadzamy oryginalne środowisko testowe i eks-perymentalnie oceniamy wpływ wykorzystania programów uczenia na głęboką odmianę metody Q-learning.
Reinforcement learning algorithms are being used to solve problems with ever-increasing level of complexity. As a consequence, training process becomes harder and more computationally demanding. Using transfer learning can partially elevate this issue by taking advantage of previ-ously acquired knowledge. In this paper we propose a novel test environment and experimentally evaluate impact of using curriculum with deep Q-learning algorithm.
Źródło:
Edukacja-Technika-Informatyka; 2018, 9, 2; 220-226
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart optimizer selection technique:a comparative study of modified DensNet201 with other deep learning models
Inteligentna technika wyboru optymalizatora: badanie porównawcze zmodyfikowanego modelu DensNet201 z innymi modelami głębokiego uczenia
Autorzy:
Manguri, Kamaran
Mohammed, Aree Ali
Powiązania:
https://bibliotekanauki.pl/articles/27315461.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
deep learning
optimization technique
transfer learning
customized dataset
modified DenseNet201
głębokie uczenie
technika optymalizacji
uczenie transferowe
dostosowany zbiór danych
zmodyfikowany DenseNet201
Opis:
The rapid growth and development of AI-based applications introduce a wide range of deep and transfer learning model architectures. Selecting an optimal optimizer is still challenging to improve any classification type's performance efficiency and accuracy. This paper proposes an intelligent optimizer selection technique using a newsearch algorithm to overcome this difficulty. A dataset used in this work was collected and customizedfor controlling and monitoring roads, especially when emergency vehicles are approaching. In this regard, several deep and transfer learning models havebeen compared for accurate detection and classification. Furthermore, DenseNet201 layers are frizzed to choose the perfect optimizer. The main goalis to improve the performance accuracy of emergency car classification by performing the test of various optimization methods, including (Adam, Adamax, Nadam, and RMSprob). The evaluation metrics utilized for the model’s comparison with other deep learning techniques are basedon classification accuracy, precision, recall, and F1-Score. Test results show that the proposed selection-based optimizer increased classification accuracy and reached 98.84%.
Szybki wzrost i rozwój aplikacji opartych na sztucznej inteligencji wprowadzają szeroki zakres architektur modeli głębokiego uczeniai uczenia transferowego. Wybór optymalnego optymalizatora wciąż stanowi wyzwanie w celu poprawy wydajności i dokładności każdego rodzaju klasyfikacji. W niniejszej pracy proponowana jest inteligentna technika wyboru optymalizatora, wykorzystująca nowy algorytm wyszukiwania,aby pokonać to wyzwanie. Zbiór danych użyty w tej pracy został zebrany i dostosowany do celów kontroli i monitorowania dróg, zwłaszcza w sytuacjach, gdy zbliżają się pojazdy ratunkowe. W tym kontekście porównano kilka modeli głębokiego uczenia i uczenia transferowego w celu dokładnej detekcjii klasyfikacji. Ponadto, warstwy DenseNet201 zostały zamrożone, aby wybrać optymalizatora idealnego. Głównym celem jest poprawa dokładności klasyfikacji samochodów ratunkowych poprzez przeprowadzenie testów różnych metod optymalizacji, w tym (Adam, Adamax, Nadam i RMSprob). Metryki oceny wykorzystane do porównania modelu z innymi technikami głębokiego uczenia opierają się na dokładności klasyfikacji, precyzji, czułości i miarze F1. Wyniki testów pokazują, że zaproponowany optymalizator oparty na wyborze zwiększył dokładność klasyfikacji i osiągnął wynik na poziomie 98,84%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 39--43
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies