Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "NDS" wg kryterium: Wszystkie pola


Tytuł:
Styren
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137477.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
styren
narażenie zawodowe
toksyczność
NDS
styrene
occupational exposure
toxicity
MAC
Opis:
Styren łatwopalna ciecz o przenikliwym i słodkim zapachu jest substancją wielkotonażową wykorzystywaną do produkcji: żywicy butadienowo styrenowej i żywic kopolimerowych z akrylonitrylem, tworzyw sztucznych wzmocnionych włóknem szklanym stosowanych w szkutnictwie oraz powłok ochronnych. Styren stosuje się także jako rozpuszczalnik i półprodukt chemiczny. Największe zawodowe narażenie na styren występuje podczas prac natryskowych oraz podczas produkcji: łodzi, pojazdów i kontenerów. Według danych Głównej Inspekcji Sanitarnej w 2007 r. w Polsce były zatrudnione 323 osoby narażone na styren o stężeniu powyżej 50 mg/m3, czyli wartości najwyższego dopuszczalnego stężenia (NDS). Osoby te pracowały przy produkcji: wyrobów gumowych i wyrobów z tworzyw sztucznych (186 osób), pozostałego sprzętu transportowego (55 osób), wyrobów niemetalicznych (51 osób) i sprzętu transportowego, a także przy produkcji niesklasyfikowanej gdzie indziej oraz w budownictwie (31 osób). W 2010 r. liczba osób zawodowo narażonych na styren powyżej wartości NDS wzrosła do 480, w tym: 203 osoby pracowały przy produkcji wyrobów gumowych i tworzyw sztucznych, 115 osób przy produkcji pojazdów samochodowych, 143 osoby przy produkcji pozostałego sprzętu transportowego, 5 osób było zatrudnionych przy produkcji włókien tekstylnych, 1 osoba przy produkcji chemikaliów, 8 osób przy produkcji gotowych wyrobów metalowych, 3 osoby w trakcie wykonywania specjalistycznych robót budowlanych oraz 2 osoby zatrudnione w handlu hurtowym (GIS 2010). W latach 2001-2010 w związku z narażeniem na styren zarejestrowano sześć przypadków chorób zawodowych: dwa przypadki zatrucia, trzy – choroby skóry oraz jeden przypadek przewlekłego zanikowego alergicznego nieżytu nosa, gardła lub krtani wywołany działaniem drażniącym styrenu. Działanie toksyczne styrenu u ludzi manifestuje się podrażnieniem: oczu, śluzówki nosa i gardła, a także zaburzeniami ze strony ośrodkowego układu nerwowego (OUN) w postaci zmian neurobehawioralnych oraz upośledzenia funkcji narządu wzroku i narządu słuchu. U pracowników przewlekle narażonych na styren opisano również zmiany: hematologiczne, czynnościowe wątroby, endokrynne i immunologiczne. Styren nie spełnia kryteriów klasyfikacji ustalonych dla toksyczności ostrej po podaniu drogą pokarmową, inhalacyjną lub dermalną w Unii Europejskiej. Styren wykazuje działanie genotoksyczne, wyrażone zmianami klastogennymi i aberracjami chromosomowymi w wyniku tworzenia adduktów z DNA przez jego tlenek. Według IARC nie ma wystarczającego dowodu na rakotwórcze działanie styrenu na ludzi, natomiast istnieje ograniczony dowód takiego działania u zwierząt (grupa 2B). Nie wykazano również embriotoksycznego, fetotoksycznego i teratogennego działania styrenu, natomiast istnieje możliwość szkodliwego działania styrenu na gonady męskie i na rozwój potomstwa w okresie postnatalnym. Podstawą do obliczenia wartości NDS dla styrenu były wyniki badań epidemiologicznych. Za skutki krytyczne przyjęto drażniące działanie tego związku oraz zaburzenia ze strony OUN. Zaproponowano pozostawienie obowiązującej w Polsce wartości NDS styrenu na poziomie 50 mg/m3 oraz zmniejszenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) do 100 mg/m3. Ponadto zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla sumy stężeń kwasu migdałowego (MA) i kwasu fenyloglioksalowego (PGA) w moczu pobranym pod koniec zmiany roboczej na poziomie 235 mg/g kreatyniny. Normatyw oznakowano literą „I” informującą, że jest to substancja o działaniu drażniącym.
Styrene monomer is a colorless to yellow oily liquid with a sweet, sharp odor at concentrations on the order of 426 mg/m3. Styrene has been produced by catalytic dehydrogenation of ethyl benzene. This compound is manufactured on a large scale. It has been widely used in the manufacture of polystyrene plastics, protective coatings, styrenated polyesters, copolymer resins with acrylonitrile and butadiene, and as a chemical intermediate. In Poland in 2010 the number of workers exposed to styrene at concentration above MAC value (50 mg/m3) was 480. In 2001 to 2010 six cases of professional diseases caused by styrene was noted. Results of animal studies revealed that styrene is a chemical of relatively low toxicity. In humans occupationally exposed to styrene an irritating effect to the eyes, both nose and throat mucosa, and central nervous system (CNS) disturbances (neurobehavioral, impairment of colour vision and hearing) were observed. Also, this chemical was caused hematological, hepatotoxic, andocrine, and immunological changes. Styrene exerts genotoxic effects causing an increase of single-strand breaks of DNA and chromosomal aberrations. There is inadequate evidence in humans and limited evidence in experimental animals for the carcinogenicity of styrene. The International Agency for Research on Cancer (IARC) has classified styrene to Group 2B. Styrene has shown neither embryotoxic, fetotoxic, and teratogenec effects. The recommended maximum admissible concentration (MAC) for styrene of 50 mg/m3 is based on the irritating effect and CNS disturbances in workers professionally exposed to this chemical. STEL value at 100 mg/m3, and “I” (irritating) notation has been proposed. Moreover, BEI value for sum of mandelic acid and phenylglyoxylic acid at level of 235 mg/g creatinine is recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 101-135
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nikotyna
Nicotine
Autorzy:
Szymańska, J.
Frydrych, B.
Bruchajzer, E.
Powiązania:
https://bibliotekanauki.pl/articles/137854.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nikotyna
toksyczność
NDS
nicotine
toxicity
MAC-value
Opis:
Nikotyna jest bezbarwną, bezwonną i oleistą cieczą otrzymywaną z liści tytoniu przez destylację z parą wodną w środowisku zasadowym i ekstrakcję eterem. Największe zużycie nikotyny jest związane z produkcją wyrobów tytoniowych, a także z produkcją środków, których zażywanie ma na celu odzwyczajenie się od palenia. Nikotyna jest składnikiem niektórych pestycydów. Narażenie zawodowe na nikotynę możliwe jest przy produkcji i suszeniu tytoniu. Zatrucia śmiertelne zdarzały się w latach 20. i 30. XX w. w trakcie opryskiwania roślin preparatami z nikotyną. Obecnie w Polsce tylko 8 osób było narażonych na nikotynę o stężeniu w powietrzu przekraczającym wartość NDS, tj. 0,5 mg/m3 (dane z 2002 r.). Do śmiertelnego zatrucia zawodowego nikotyną dochodzi bardzo rzadko. Objawami ostrego zatrucia małymi dawkami nikotyny są: pobudzenie oddechu, nudności, wymioty, bóle i zawroty głowy, biegunka, częstoskurcz, wzrost ciśnienia krwi oraz pocenie i ślinienie się. Po dużych dawkach nikotyny stwierdzono ponadto pieczenie w jamie ustnej, gardle i żołądku. Później następowało wyczerpanie, drgawki, osłabienie czynności oddechowej, zaburzenie rytmu serca oraz zaburzenia koordynacji ruchowej i śpiączka. Śmierć może wtedy nastąpić w czasie od 5 min do 4 h. Zatrucia przewlekłe nikotyną prowadzą do zaburzeń układu krążenia. Zmiany naczyniowe sprzyjają powstawaniu dusznicy bolesnej oraz zawałom serca, a także powodują: osłabienie pamięci, zwolnienie procesów psychicznych i koordynacji myśli, brak energii oraz ogólne wyczerpanie. Obserwuje się również zaburzenia ze strony przewodu pokarmowego. Nikotyna jest związkiem, który powoduje uzależnienie fizyczne i psychiczne. W dostępnym piśmiennictwie nie znaleziono danych epidemiologicznych dotyczących zawodowego narażenia na nikotynę w postaci czystej. Nikotyna jest substancją o dużej toksyczności ostrej dla zwierząt – po podaniu dożołądkowym wartość DL50 mieści się w granicach 3,34 ÷ 188 mg/kg masy ciała. Informacje na temat toksyczności nikotyny wskazują na jej wielokierunkowe działanie. Narażenie drogą pokarmową szczurów na dawkę 1 mg/kg/dzień nikotynę przez 9 dni nie spowodowało żadnych zmian. Podobnie żadnych skutków nie zanotowano po podawaniu nikotyny szczurom w dawce 1,14 mg/kg/dzień przez 34 tygodnie. Dawka czterokrotnie większa powodowała wzrost aktywności niektórych enzymów w sercu szczurów narażonych przez 34 tygodnie. Podobna dawka podawana przez 9 dni wywoływała zmiany w zapisie EEG. Narażenie szczurów na nikotynę w dawce 3,5 mg/kg/dzień przez 90 dni oraz na nikotynę w dawce 12,5 mg/kg/dzień przez 28 dni (dawka skumulowana wynosiła odpowiednio: 315 lub 350 mg/kg) powodowało u zwierząt zaburzenia w gospodarce lipidowej i węglowodanowej. Z obserwacji zależności efektu toksycznego od wielkości narażenia po podaniu dożołądkowym nikotyny można przyjąć za wartość NOAEL dawkę 1,14 mg/kg/dzień, a za wartość LOAEL dawkę 4,56 mg/kg/dzień. Nikotyna nie wykazuje działania mutagennego, ale jest jednak genotoksyczna (wymiana chromatyd siostrzanych i aberracje chromosomowe) oraz fetotoksyczna. Udowodnione działanie rakotwórcze wykazują nitrozoaminy – związki powstające w wyniku palenia się tytoniu (NNN i NNK). Nikotyna dobrze wchłania się przez drogi oddechowe, przewód pokarmowy i skórę. Największe stężenia nikotyny stwierdzono w mózgu, nerkach, błonie śluzowej żołądka, rdzeniu nadnerczy, błonie śluzowej nosa i śliniankach. Nikotyna wiąże się z białkami osocza w 5 20% i przenika przez łożysko oraz do mleka matek karmiących. W trakcie metabolizmu nikotyna może ulegać: C-oksydacji, demetylacji połączonej z C-oksydacją, N-oksydacji oraz N-metylacji. Jej głównymi metabolitami są: kotynina i nikotyno-1’-N-tlenek. Nikotyna i jej metabolity są szybko wydalane przez nerki. Mechanizm działania nikotyny jest wypadkową aktywacji cholinergicznych receptorów nikotynowych powodujących pobudzenie komórek nerwowych i desensytyzacji powodującej zablokowanie przekaźnictwa sympatycznego. Działania obwodowe wywołane małymi dawkami nikotyny są wynikiem pobudzenia zwojów autonomicznych i obwodowych receptorów czuciowych, głównie w sercu i płucach. Pobudzenie tych receptorów wywołuje częstoskurcz, zwiększenie wyrzutu serca, wzrost ciśnienia tętniczego, zmniejszenie perystaltyki przewodu pokarmowego i pocenie się. Najbardziej rozpowszechnionym wśród ludzi przykładem działania łącznego nikotyny z innymi związkami jest palenie papierosów, w których – oprócz nikotyny – znajdują się setki innych substancji. Jednoczesnemu narażeniu szczurów na nikotynę i etanol towarzyszyło znaczące zmniejszenie ich płodności oraz zaburzenie reakcji immunologicznych u potomstwa. Nikotyna nasila hepatotoksyczne działanie CCl4. Na podstawie danych literaturowych przyjęto dawkę 1,14 mg/kg/dzień (po której nie zaobserwowano żadnych szkodliwych skutków) za wartość NOAEL nikotyny, zaś dawkę 4,56 mg/kg/dzień – za jej wartość LOAEL Po analizie danych literaturowych i wykonanych obliczeniach pozostano przy obowiązującej w Polsce wartości najwyższego dopuszczalnego stężenia (NDS) nikotyny wynoszącej 0,5 mg/m3 z oznaczeniami związku literami „Sk” i „Ft”. W dostępnym piśmiennictwie nie znaleziono informacji uzasadniających wyznaczenie dla nikotyny wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh).
Nicotine is an oily, colourless and odourless liquid obtained from leaves of tobacco plants. The most widespread use of nicotine is in tobacco as well as in remedies for nicotine abuse. Nicotine is a component of certain pesticides. Occupational exposure to nicotine is possible during its production and the tobacco drying process. To date only 8 people have been exposed in Poland to nicotine concentration in the air exceeding the TWA value which is 0.5 mg/m3 (data from 2002). Deadly occupational nicotine intoxication is very rare. The symptoms of severe nicotine intoxication with its small doses are: increased breath stimulation, nausea, vomitting, headache and vertigo, diarrhea, tachycardia, high blood pressure as well as sweating and excessive saliva production. After the administration of high doses of nicotine the following symptoms occured: burning sensations in the oral cavity, throat and stomach, fatigue, palpitations, weakening of the respiratory functions, disturbances of cardiac rhythm, dizziness, weakness, lack of coordination and coma. Death can then occur within 5 minutes up to 4 hours. Chronic nicotine intoxication leads to disturbances in the circulatory system. Vascular changes may lead to angina pectoris and heart attacks; they also cause: a weakening of memory, a slowdown of physical processes and thought coordination, lack of energy and exhaustion. Disturbances in the digestive system may also occur. Nicotine causes both physical and mental abuse. No epidemiological data was found concerning occupational exposure to nicotine in pure form. Nicotine is a substance of high acute toxicity to animals. After intragastrical administration the LD50 value is between 3.34 ÷ 188 mg/kg of body weight. Information concerning toxicity of nicotine indicates its multidirectional influence. Exposure of rats at oral doses (1 mg/kg/day, 9 days or 1.14 mg/kg/day, 34 weeks) caused no changes. When fourfold higher doses were administered to rats, after 34 weeks they caused an increase in the activity of certain enzymes in the heart, and the EEG changed after 9 days. Exposure to nicotine for 28 and 90 days (the accumulated dose was 350 or 315 mg/kg respectively) caused a disturbances in lipid and carbohydrate metabolism. Nicotine has no mutagenic potential, yet it is genotoxic (sister chromatid exchanges and chromosomal aberrations) as well as fetotoxic. Nitrosoamines (compounds produced due to tobacco smoking) have proved to show carcinogenic potential. Nicotine is well absorbed via respiratory tracts, the alimentary canal and the skin. The highest concentrations were detected in the brain, kidneys, stomach mucosa, adrenal medulla, nasal mucosa and salivary glands. Nicotine binds with plasma proteins in 5 - 20%. It penetrates through placenta and gets to the milk of nursing mothers. During metabolism nicotine can undergo: C-oxidation, demethylation with z C-oxidation, N-oxidation and N-methylation. Nicotine’s core metabolites are: cotinine and nicotine-1’-N-oxide. Nicotine and its metabolites are rapidly discharged by the kidneys. Smoking cigarettes is the most common example of nicotine activity together with many other compounds. In addition to nicotine, they include hundreds of other substances. Rats simultaneously exposured to ethanol and nicotine have shown impaired fertility and disturbance of immunological reactions occured in the offspring. Nicotine increases the hepatotoxic activeness of CCl4. Basing on the literature data 1.14 mg/kg/day has been accepted as a NOAEL value of nicotine (no negative results have been observed) whereas 4.56 mg/kg/day has been taken as its LOAEL value. After an analysis of published data and after conducting necessary calculations the MAC of nicotine in Poland remains unchanged: 0.5 mg/m3 with ‘Sk’ and ‘Ft’ compound symbols.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 121-154
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pirydyna
Pyridine
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137629.pdf
Data publikacji:
2013
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
pirydyna
toksyczność
narażenie zawodowe
NDS
pyridine
toxicity
occupational exposure
MAC
Opis:
Pirydyna jest stosowana jako rozpuszczalnik: farb, gumy, produktów farmaceutycznych, żywic poliwęglanowych i środków impregnacyjnych do tkanin. Duże ilości pirydyny Są stosowane jako związek wyjściowy do produkcji: pochodnych pirydyny, piperydyny, pestycydów, leków i innych produktów. Zawodowe narażenie na pirydynę może występować podczas: jej produkcji, dalszego jej przerobu i dystrybucji, a także uwalniania związku jako produktu rozkładu węgla czy smoły węglowej oraz produktów zawierających pirydynę. Stężenia pirydyny w powietrzu środowiska pracy w drugiej połowie XX w. kształtowały się od 0,002 do około 20 mg/m. Według danych Głównego Inspektora Sanitarnego łączna liczba pracowników narażonych Polsce na pirydynę o stężeniach w zakresie od > 0,1 do 0,5 wartości NUS (tj. 5 mg/m wynosiła 31 osób w 2010 r. oraz 46 osób w 2011 r. Nie było pracowników narażonych na pirydynę o stężeniach przekraczających 0,5 wartości NDS. Dawkę śmiertelną pirydyny dla człowieka oszacowano na 0,5 ÷ 5,0 mg/kg m.c. W opisanych przypadkach zatruć ostrych pirydyną obserwowano po zatruciu drogą pokarmową: nudności, zawroty głowy, ból brzucha i przekrwienie bierne płuc. Po zatruciu inhalacyjnym pirydyną objawy wskazywały na działanie związku na ośrodkowy układ nerwowy i charakteryzowały się zaburzeniami mowy oraz rozległymi cechami niedotlenienia kory mózgu. Opisano także przypadki przewlekłego zatrucia pirydyną pracowników zatrudnionych w zakładach chemicznych, w których stężenia pirydyny w powietrzu wynosiły około 19 ÷ 42 mg/m Objawami zatrucia były: bóle i zawroty głowy, nerwowość, bezsenność, czasami nudności i wymioty. Na podstawie wyników nielicznych badań epidemiologicznych nie stwierdzono wzrostu umieralności u osób narażonych na pirydynę w latach 1961- -1983 w trzech zakładach w Wielkiej Brytanii. Na podstawie wyników badań toksyczności ostrej na zwierzętach doświadczalnych (szczurach, my szach, świnkach morskich, królikach i psach) wykazano, że pirydyna należy do związków szkodliwych (Xn). Związek ten wykazywał słabe działanie drażniące na skórę królików i nie powodował uczulenia skóry w badaniach na świnkach morskich. W badaniach podprzewlekłych i przewlekłych, w których pirydynę podawano zwierzętom w różnych dawkach drogą pokarmową (p.o. lub w wodzie do picia), u zwierząt obserwowano: zmniejszenie przyrostu masy ciała, uszkodzenie wątroby i nerek oraz wpływ związku na układ rozrodczy. Pirydyna nie wykazała działania mutagennego. Na podstawie wyników badań na szczurach i myszach w programie NTP uznano, że dowód działania rakotwórczego pirydyny na szczury jest niejedno znaczny, natomiast istnieje wyraźny dowód działania rakotwórczego związku na myszy. W IARC zaliczono pirydynę do grupy 3., tj. związków nie- klasyfikowanych pod względem rakotwórczości dla ludzi. Za krytyczne skutki u ludzi po powtarzanym narażeniu na pirydynę uznano działanie depresyjne związku na ośrodkowy układ nerwowy (OUN) oraz skutki działania na wątrobę i nerki, będące najwcześniejszymi objawami toksycznego działania związku na gryzonie. Do wyprowadzenia wartości najwyższego dopuszczalnego stężenia (NDS) pirydyny przyjęto dane dotyczące skutków przewlekłego narażenia myszy i szczurów na związek drogą pokarmową. Wartości NOAEL/LOAEL dla podprzewlekłych i przewlekłych doświadczeń na gryzoniach mieszczą się w zakresie dawek od <7 do 50 mg/kg m.c. Na podstawie wyników 2-letnich badań, w których szczurom szczepu F344/N lub Wistar podawano pirydynę z wodą do picia, wykazano, że po najmniejszych podanych dawkach (7 lub 8 mg/kg/dzień) u części zwierząt wystąpiło uszkodzenie wątroby. Dawkę 7 mg/kg m.c. przyjęto więc za wartość ŁOA EL stanowiącą podstawą do wyprowadzenia wartości NDS pirydyny.
Pyridine, a cołorless liquid with a characteristic un pleasarit odor, has been categorized as a highly flam mable and harmful substance. It exerts harmful effects if inhaled, swalowed or absorbed through the skin. Pyridine is used as a solvent in paints, rubber, pharmaceuticals, polycarbonate resins and textile fabric impregnating agents. Its large quantities are applied as a precursor in the production of pyridine deriatives, piperidine, pesticides, phannaceuticals and other products. Occupational exposure to pyridine may occur during its production, further processing and distribution, as well as during the process of pyridine release, yield ing coal and tar breakdown products or pyridine containing products. In the second half of the 2Oth century pyridine air concentration in the occupational environment ranged from 0.002 to about 20 mg/m In Poland, according to the 2011 data of the Chief Sanitary Inspectorate, 31 workers in 2010 and 46 workers in 2011 were occupationally exposed to pyridine at concentrations from > 0.1 to 0.5 of the maximum admissible concentration (MAC) value, equal 5 mg/m No workers were exposed to pyridine at concentration exceeding the 0.5 MAC value. The human lethal dose of pyridine has been estimated at 0.5 - 5.0 mg/kg of body weight. In the reported cases of acute pyridine intoxication the following symptoms and signs were observed after ingestion: nausea, vertigo, abdominal pain and lung congestion and after inhalation: effects on the central nervous system (CNS) characterized by speech disorders and extensive cerebral cortex hypoxia. Chronic pyridine intoxication of workers employed in chemical plants, where its air concentrations reached 19 - 42 mg/m have also been reported. In those cases, such symptoms as headaches, vertigo, nervousness, insomnia, occasional nausea and vomiting were found. Based on the results of rather rare epidemiological studies no excess mortality among workers exposed to pyridine in three British plants was found in 1961—1983. The studies of acute toxic effect of pyridine carried out on laboratory animals (rats, mice, guinea pigs, rabbits and dogs) have evidenced that pyridine is a harmful (Xn) compound. Pyridine induces mild irritation effects on the rabbit skin, but it does not generate dermal allergy in guinea pigs. The studies of sub-chronic and chronic effects of pyridine, administered (per os or in drinking water) in different doses have revealed decreased body mass gain, liver and kidney damage and reproductive disorders in laboratory animals. Pyridine does not show mutagenic effects. Based on the results of studies on rats and mice, performed under the NTP program, the absence of clear-cut evidence that pyridine exerts carcinogenic effect on rats has been claimed, however, carcinogenic effect of pyridine on mice bas been evidenced. The International Agency for Research on cancer has categorized pyridine with respect to its potential carcinogenic risk to group 3 as not classifiable as to its car cinogenicity to humans. CNS depression observed iii humans after repeated exposure to pyridine, as well as the damage to liver and kidneys, the earliest symptoms of its toxic effect on rodents, are recognized as critical effects of tbis compound. The data on effects of chronic exposure of mice and rats to pyridine via ingestion served as grounds for estimating its MAC value. The values of no ob served adverse effect Ievel / the lowest observed adverse effect level (NOAEŁ/LOAEŁ) for sub chronic and chronic experiments on rodents fall within the range of > 7-50 mg/kg of body weight. The results of a two-year study on F344/N or Wistar rats administered pyridine in drinking water showed that the liver damage had occurred in a part of the study animals after the lowest doses (7 or 8 mg/kg/day). Therefore, a dose of 7 mg/kg of body weight was finally adopted as the LOAEŁ value, being the basis for setting the MAC value of pyridine. The LOAEŁ value of 7 mg/kg of body weight for pyridine corresponds with pyridine air concentration of 49 mg/m (15 ppm), providing that an adult person of 70 kg body weight inhales 10 m of the air during an 8-hour work shift. After applying coefficients of uncertainty (total value, 8), the MAC value for pyridine was estimated at 6.13 mg/m In the EU, the OEL value for pyridine bas not been set, however, maintaining its air concentration be bw 5 ppm (16 mg/m3 is recommended. The established pyridine MAC value of 6.13 mg/m3 not only meets this criterion but it is also close to the MAC value (5 mg/m for pyridine binding in Poland. The authors of the documentation have suggested to keep the MAC value for pyridine at 5 mg/m since according to the Chief Sanitary Inspectorate data for 2010-2011 in Po there were no workers exposed to pyridine at concentrations exceeding 0.5 of the MAC value (2.5 mg/m The compound was la belied with „Sk” indicating dermal absorption of the substance. There are no grounds for defining the maximum admissible short-term exposure level (STEL) for this compound. Therefore, it has been suggested to eliminate this value from the list of MAC values. The adherence to MAC value for pyridine of 5 mg/m should protect workers against harmful effects of pyridine on the CNS observed after exposure to its concentrations of 19—42 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2013, 3 (77); 59-82
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan
Nitroethane
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958174.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Stosowany jest jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako: rozpuszczalnik estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Według danych Stacji Sanitarno Epidemiologicznej w Bydgoszczy w 2007 r. nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach, które by przekraczały obowią-zujące wartości najwyższego dopuszczalnego stężenia (NDS) 30 mg/m3. Nitroetan może wchłaniać się do organizmu w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3 roku życia, które przypad-kowo wypiły zmywacz do sztucznych paznokci zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica i czasem wymioty, a poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Brak jest danych dotyczących zatruć przewlekłych nitroetanem u ludzi oraz danych epidemiologicznych. Na podstawie wyników badań toksyczności ostrej zaklasyfikowano nitroetan do związków szkodli-wych. Nie wykazano działania drażniącego związku na oczy i skórę oraz jego działania uczulającego.W badaniach podprzewlekłych (narażenie trwało 4 lub 90 dni) i przewlekłych (narażenie trwało 2 lata) przeprowadzonych na szczurach i myszach w zakresie stężeń 310 ÷ 12 400 mg/m3 nitroetanu stwier-dzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenie: wątroby, śledziony, ślinianek oraz małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Po przewlekłym narażeniu szczurów (2 lata) na nitroetan o stężeniu 620 mg/m3 (LOAEL) stwierdzono niewielkie zmniejszenie masy ciała zwierząt narażanych oraz brak zmian w wynikach badań hemato-logicznych, biochemicznych i histopatologicznych. Stosując wartość LOAEL równą 620 mg/m3, a także odpowiednie współczynniki niepewności, zapro-ponowano przyjęcie stężenia 75 mg/m3 nitroetanu za wartość NDS związku. Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu. Zapropo-nowano, ze względu na działanie methemoglobinotwórcze związku, przyjęcie dla nitroetanu wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHb we krwi, która została ustalona dla wszystkich substancji methemoglobinotwórczych.
Nitroethane is a colorless oily liquid with a mildly fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), as well as a solvent or a dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur in the processes of its production and processing. According to data provided by the Sanitary and Epidemiological Station in Bydgoszcz, Poland, as of 2007 there had been no cases in the Polish industryof workers’ exposure to this compound that would exceed the maximum admissible concentration (MAC) value of 30 mg/m3. Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. 170 The discussed cases of nitroethane acute poisoning applied to children under three years of age caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane. A few hours after ingestion cyanosis and sporadic vomiting were observed in children and the methemoglobin level reached 40–50%. There are no data on chronic nitroethane poisoning in humans or data obtained from epidemio-logical studies. On the basis of the results of acute toxicity studies, nitroethane has been classified as a hazardous com-pounds. However, there has been no evidence of its eye and dermal irritation or allergic effects. The studies of sub-chronic (exposure lasting from 4 to 90 days) and chronic (2-year) exposure to nitroethane, carried out on rats and mice (concentration range, 310–12 400 mg/m3), revealed the methemoglobinogenic effect, as well as minor damage to the liver, spleen, salivary gland and nasal turbinates caused by nitroethane. Niroethane has shown neither mutagenic nor carconogenic effects. There has been no evidence of its influence on fertility either. After chronic (2-year) exposure of rats to nitroethane at 620 mg/m3 (the lowest observed adverse effect level – LOAEL), there was a slight change in the body mass of exposed animals, but there were no anomalies in hematological, biochemical and histopathological examinations. By applying the LOAEL value of 620 mg/m3 and relevant coefficients of uncertainty, the value of 75 mg/m3 has been suggested to be adoptedas the MAC value for this compound. There are no grounds for setting the value of short-term exposure limit (STEL) for nitroethane. On account of its methemoglobinogenic effect, 2% Met-Hb has been suggested to beadopted as the value of the biological exposure index (BEI), a value already adopted for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 3 (69); 155-170
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ortokrzemian tetraetylu
Ethyl silicate
Autorzy:
Sapota, A.
Powiązania:
https://bibliotekanauki.pl/articles/137852.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
toksyczność
ortokrzemian tetraetylu
narażenie zawodowe
NDS
ethyl silicate
toxicity
occupational exposure
MAC
Opis:
Ortokrzemian tetraetylu jest bezbarwną cieczą o słabo wyczuwalnym zapachu. Związek ten znalazł zastosowanie w różnych gałęziach przemysłu, np.: w przemyśle chemicznym, farmaceutycznym czy farb i lakierów. Stosowany jest także jako preparat utwardzający (wzmacniający) kamień naturalny, terakotę, stiuk, freski i glinę, a także jest wykorzystywany przy produkcji cegieł oraz jako rozpuszczalnik wodoodporny i kwasoodporny do zaprawy murarskiej i cementu. Ortokrzemian tetraetylu wchłania się dobrze przez drogi oddechowe, z przewodu pokarmowego i słabo przez skórę. U pracowników narażonych na ortokrzemian tetraetylu związek ten wykazywał działanie drażniące na oczy i błonę śluzową nosa. Nie ma w dostępnym piśmiennictwie danych dotyczących przewlekłego działania ortokrzemianu tetraetylu u ludzi. Ostra toksyczność ortokrzemianu tetraetylu u zwierząt doświadczalnych wyrażona medialnymi dawkami letalnymi jest stosunkowo mała. Związek wykazuje łagodne działanie drażniące na oczy królika. Nie ma danych dotyczących toksyczności przewlekłej ortokrzemianu tetraetylu. W badaniach krótkoterminowych i podprzewlekłych na myszach i szczurach narażonych na ortokrzemian tetraetylu inhalacyjnie oraz po podaniu innymi drogami wykazano oprócz zmian martwiczych w nabłonku węchowym jamy nosowej także zmiany w wątrobie oraz nerkach, które obejmowały śródmiąższowe zapalenie nerek i zmiany martwicze w kanalikach nerkowych. W przypadku krótkoterminowego narażenia na ortokrzemianu tetraetylu o dużych stężeniach u zwierząt doświadczalnych obserwowano również działanie toksyczne związku na płuca (obrzęk płuc, nacieczenia leukocytów oraz wybroczyny krwawe w pęcherzykach płucnych i oskrzelach). Ortokrzemianu tetraetylu nie wykazywał działania mutagennego w testach Amesa. W dostępnym piśmiennictwie nie znaleziono także danych na temat jego działania embriotoksycznego, fetotoksycznego i teratogennego. Związek nie jest klasyfikowany przez IARC pod względem działania rakotwórczego. Z przedstawionych w dokumentacji danych wynika, że głównym skutkiem działania toksycznego u ludzi ortokrzemianu tetraetylu o dużych stężeniach (powyżej 2000 mg/m3) było działanie drażniące na oczy i błonę śluzową nosa, natomiast w przypadku zwierząt doświadczalnych działanie nefrotoksyczne oraz uszkodzenie nabłonka węchowego jamy nosowej. Za podstawę do obliczenia wartości NDS ortokrzemianu tetraetylu przyjęto jego działanie nefrotoksyczne. Narażenie inhalacyjne przez 90 dni szczurów, królików i świnek morskich na ortokrzemian tetraetylu o stężeniach: 199; 432 lub 760 mg/m3 nie wykazało żadnych zmian narządowych, co pozwoliło na przyjęcie stężenia 760 mg/m3 za wartość NOAEL. W innym doświadczeniu przeprowadzonym na szczurach narażanych przez 28 dni drogą inhalacyjną na działanie ortokrzemianu tetraetylu o stężeniu 850 mg/m3 wykazano jego działanie nefrotoksyczne, które manifestowało się śródmiąższowym zapaleniem nerek oraz zmianami martwiczymi w kanalikach nerkowych. Po przyjęciu odpowiednich współczynników niepewności oraz stężenia 760 mg/m3 za wartość NOAEL, wyliczona wartość NDS ortokrzemianu tetraetylu wynosi 95 mg/m3. W Polsce obowiązująca wartość NDS ortokrzemianu tetraetylu wynosi 80 mg/m3. W państwach Unii Europejskiej, a także w większości państw poza Unią, obowiązujące wartości NDS ortokrzemianu tetraetylu wynoszą 85 lub 87 mg/m3. Wobec stosunkowo niewielkiej różnicy między wartością obliczoną (95 mg/m3) a wartością dotychczas obowiązującą, proponujemy zachować wartość NDS ortokrzemianu tetraetylu na dotychczasowym poziomie, tj. wynoszącą 80 mg/m3. Zaproponowana wartość NDS ortokrzemianu tetraetylu powinna zabezpieczyć pracowników przed potencjalnym działaniem układowym. Ze względu na wysoki próg działania drażniącego na oczy i błony śluzowe u ludzi należy uznać, że przyjęta wartość zabezpieczy także przed działaniem drażniącym związku. Normatyw jest oznaczony literą „I”, ponieważ jest to substancja o działaniu drażniącym. Nie ma podstaw do przyjęcia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i dopuszczalnego stężenia w materiale biologicznym (DSB) ortokrzemianu tetraetylu.
Ethyl silicate is a colorless liquid with a slightly perceptible odor. This compound finds numerous applications in a number of industrial branches, e.g., paint and lacquer, chemical or pharmaceutical. It is also used as an agent to harden natural stone, terracotta, artificial marble, frescoes and clay as well as a water- and acid-resisting solvent applied in cement and masonry mortar in brick production. Ethyl silicate is well absorbed via respiratory and alimentary tracts, but its absorption through the skin is rather weak. In ethyl silicate-exposed workers, eye and nasal mucosa irritating properties of this compound have been observed. Data on chronic ethyl silicate effects in humans are not available in the literature. In laboratory animals, ethyl silicate’s acute toxicity, expressed in median lethal doses, is relatively low. Ethyl silicate shows a mild irritating effect on rabbits’ eyes. There is no data on ethyl silicate’s chronic toxicity. In short-term, sub-chronic studies performed on mice and rats exposed to ethyl silicate through inhalation and after its administration in other ways, along with necrotic lesions in the olfactory epithelium of the nasal cavity, there were changes in the liver and kidneys. The latter comprised interstitial inflammation and necrotic lesions in renal tubules. Short-term exposure of laboratory animals to high ethyl silicate doses induced its toxic effect on the lungs (pulmonary edema, leukocyte infiltration, petechia in pulmonary alveoli, and bronchial tubes). Ethyl silicate’s mutagenic effect has not been revealed in the Ames test. No data on embryotoxic, phototoxic, and teratogenic effects of ethyl silicate are available in the literature. This compound has not been categorized by the International Agency for Research on Cancer (IARC) with respect to its potential carcinogenic risk. The presented evidence shows that the major toxic effect of ethyl silicate at its high concentrations (over 2000 mg/m3) is eye and nasal mucosa irritation in humans, whereas the nephrotoxic effect and damage to the olfactory epithelium of the nasal cavity are observed in laboratory animals. On the basis of the nephrotoxic effect of ethyl silicate, its maximum allowable concentration (MAC) was calculated. Inhalation exposure of rats, rabbits and guinea pigs to ethyl silicate at concentrations of 199, 432, and 760 mg/m3 for 90 days did not reveal any organic changes, which has made it possible to adopt the concentration of 760 mg/m3 as the value of no observed adverse effect level (NOAEL). Another experiment performed on rats exposed via inhalation to this compound at the concentration of 850 mg/m3 for 28 days revealed its nephrotoxic effect manifestem by interstitial kidney inflammation and necrotic lesions in renal tubules After adopting relevant uncertainty coefficients and the concentration of 760 mg/m3 as the NOAEL value, the calculated MAC value for ethyl silicate is 95 mg/m3. In Poland, the binding MAC value for ethyl silicate is 80 mg/m3, whereas in other countries of the European Union (EU) and in most outside the EU, MAC values are kept at the level of 85 – 87 mg/m3. In view of the relatively small difference between the calculated value (95 mg/m3) and that binding to date, it is proposed to keep the MAC value at the present level, i.e., 80 mg/m3. The proposed MAC value should protect workers against the potential systemic ethyl silicate effect. Bearing in mind the high threshold of its irritating effect on eyes and mucous membrane in humans, it should be assumed that the adopted MAC value will also be effective in this case. There are no grounds for adopting MAC (STEL) and BEI values for this compound.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 3 (53); 75-89
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitrotoluen – mieszanina izomerów
Nitrotoluene
Autorzy:
Sapota, A.
Kilanowicz, A
Powiązania:
https://bibliotekanauki.pl/articles/137449.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitrotoluen
działanie toksyczne
narażenie zawodowe
NDS
nitotoluene
toxicity
occupational exposure
MAC
Opis:
Nitrotoluen (NT) jest mieszaniną trzech izomerów: 2-, 3- i 4-nitrotoluen, które nie występują w stanie naturalnym. Nitrotoluen jest wykorzystywany do produkcji azowych i siarkowych barwników do bawełny, wełny, jedwabiu, skóry i papieru, a także jest stosowany w rolnictwie, fotografii, przemyśle farmaceutycznym oraz przy produkcji gum. Nie ma udokumentowanych danych dotyczących zatruć ostrych, przewlekłych oraz danych epidemiologicznych osób narażonych na nitrotoluen. Z badań toksyczności ostrej na zwierzętach doświadczalnych wynika, że zakresy wartości DL50 dla szczurów i myszy po podaniu dożołądkowym (per os) dla izomerów 2- i 3-NT wynosiły 891 ÷ 2463 mg/kg m.c., natomiast dla 4-NT – 1960 ÷ 7100 mg/kg m.c. Z badań toksyczności podprzewlekłej (13 tygodni) przeprowadzonych na dwóch gatunkach gryzoni obu płci (myszy i szczury) wynika, że najbardziej toksycznym izomerem jest 2-NT. U zwierząt po 13 tygodniach narażania na 2-NT wykazano: niewielki spadek liczby erytrocytów (RBC), zmniejszone stężenie hemoglobiny, wzrost liczby retikulocytów, leukocytów, wzrost średniej objętości krwinek czerwonych oraz wzrost stężenia methemoglobiny. Wszystkie badane stężenia izomeru powodowały zaburzenia czynności wątroby, śledziony i nerek. U większości narażanych zwierząt stwierdzono zmiany w wątrobie obejmujące przerost i wakuolizację hepatocytów, a także pojedyncze ogniska zapalne zbudowane głównie z eozynofilów. Stwierdzono ponadto istotnie wzmożoną proliferację komórek hematopoetycznych w śledzionie i w szpiku kostnym. Z badań przewlekłych (2-lata) przeprowadzonych przez NTP (2002) dla 2-NT i 4-NT na my-szach i szczurach obu płci wynika, że 2-NT wykazywał znacznie większą toksyczność niż 4-NT. 2-NT zarówno u myszy, jak i szczurów powodował zmniejszenie przyrostu masy ciała, a w badaniach histopatologicznych stwierdzono występowanie nowotworów: skóry, sutka i wątroby u szczurów obu płci, natomiast u samców także międzybłonka pochewki jądra i płuc. Działanie rakotwórcze 2-NT stwierdzono również u myszy obu płci, u których zmiany nowotworowe były zlokalizowane w układzie krążenia, jelicie grubym i wątrobie. Po podaniu 4-NT stwierdzono u szczurów samców jedynie pojedyncze przypadki nowotworów skóry oraz u samic przypadki raków gruczołu łechtaczkowego. U myszy skutki kancerogenne stwierdzono tylko u samców (raki oskrzelikowo-pęcherzykowe). Z analizy rodzaju i liczby obserwowanych nowotworów można wnioskować, że ten typ nowotworów nie powinien występować w wyniku narażenia zawodowego ludzi i nie może być podstawą do analizy ryzyka. Z uwagi na brak wystarczających dowodów działania rakotwórczego 2-NT na ludzi i ograniczone dowody działania rakotwórczego na zwierzęta doświadczalne Międzynarodowa Agencja Badań nad Rakiem (IARC) w 1996 r. zaliczyła nitrotoluen, na podstawie wyników eksperymentu 13-tygodniowego, do grupy 3., czyli związków nieklasyfikowanych jako kancerogeny dla ludzi (wyniki 2-letnich badań 2- i 4-NT wykonane na szczurach i myszach przez NTP zostały opublikowane w 2002 r.). Ze względu na brak badań toksyczności dla mieszaniny wszystkich trzech izomerów, do wyliczenia wartości NDS przyjęto wyniki 2-letnich badań dla najbardziej toksycznego izomeru, tj: 2-nitro-toluenu. W tym eksperymencie 2-NT podawano szczurom obu płci w paszy o stężeniach: 625; 1250 lub 2000 ppm przez 105 tygodni. Dawkę najmniejszą (625 ppm w paszy) odpowiadającą 25 mg/kg m.c./dzień dla samców i 30 mg/kg m.c./dzień dla samic przyjęto za wartość LOAEL. Ze względu na fakt, iż samce były znacznie bardziej wrażliwe niż samice na działanie 2-NT do obliczeń wartości NDS przyjęto dawkę 25 mg/kg m.c./dzień ustaloną dla samców za wartość LOAEL. Przyjmując cztery współczynniki niepewności, obliczono wartość NDS równą 11 mg/m3. Zaproponowana wartość NDS dotyczy poszczególnych izomerów nitrotoluenu (2-NT, 3-NT i 4-NT) oraz ich mieszaniny. Normatyw oznaczono literami „Sk‖ – substancja wchłania się przez skórę. Ze względu na działanie methemoglobinotwórcze zaproponowano wartość dopuszczalnego stężenia w materiale biologicznym (DSB) taką samą jak dla wszystkich substancji methemoglobinotwórczych, czyli 2% MetHb we krwi.
Nitrotoluene (NT) is a mixture of three isomers: 2-, 3- and 4-NT; it does not occur in a natural form. NT is used in the production of azo and sulfur dies for cotton, wool, silk, leather and paper. It is also used in the agriculture, photographic and pharmaceutical industries, as well as in the production of rubber. There are neither documented data on acute and chronic toxicity, nor epidemiological data on NT-exposed persons. The animal (rats and mice) studies of acute toxicity have revealed the following ranges of DL50 values after per os administration of isomers: 891÷2463 mg/kg body mass (b.m.) for 2- and 3-NT and 1960÷7100 mg/kg b.m. for 4-NT. Studies of subacute toxicity (13 weeks), performed on two species of rodents (mice and rats) of both genders, showed that 2-NT is the most toxic isomer. Thirteen weeks of 2-NT exposure caused an insignificant decrease in the number of erythro-cytes and in the concentration of hemoglobin, an enhanced number of reticulocytes and leuco-cytes, a diminished mean volume of erythrocytes and an augmented concentration of methe-moglobins. All the isomer concentrations induced functional disorders in the liver, spleen and kidneys. Most of the exposed animals showed lesions in the liver, mainly manifested by hyper-throphy and vacuolization of hepatocytes, and single inflammatory foci mostly composed of eosinophils. In addition, a significantly increased proliferation of hematopoietic cells in the spleen and bone marrow was observed. A long-term (2-year) study, carried out by the NTP (2002) on mice and rats (of both genders) exposed to 2-NT and 4-NT, have revealed a significantly higher toxicity of 2-NT than that of 4-NT. In both mice and rats, 2-NT decreased body mass gain. Moreover, subcutaneous skin carcino-ma, liver (hepatocellular) adenoma and mammary cancer were revealed on histopathological examination. In addition, mesothelioma of the tunica vaginalis testis and lungs were observed in males. A carcinogenic effect of 2-NT has also been found in mice of both genders, the ob-served neoplastic lesions were located in the circulatory system, large intestine and liver. Only single cases of subcutaneous carcinoma in male and clitoral carcinoma in female rats were found after 4-NT administration. In mice, carcinogenic effects of 4-NT administration were observed only in males (alveolar/bronchiolar carcinoma). Having analyzed the type and num-ber of the observed carcinomas, it can be concluded that this type of neoplasms due to occupa-tional exposure should not occur in humans and it cannot provide the basis for risk assessment. In 1996, in view of insufficient evidence that 2-NT is carcinogenic to humans on the basis of a 13-week experiment, IARC categorized nitrotoluene into group 3 — not classifiable as to its carcinogenicity to humans (the results of a 2-year study of 2- and 4-NT performed on rats and mice by NTP were published in 2002). Bearing in mind that no investigations on NT toxicity have been carried out to date, the results of a 2-year experiment for the most toxic isomer (2-NT) have been taken as a basis for calculat-ing the MAC value. In this experiment, 2-NT was administered to the rats (both genders) in their diet at three concentrations: 625, 1250 or 2000 ppm for 105 weeks. The lowest dose (625 ppm) that corresponded to 25 mg/kg body mass/day for males and 30 mg/kg body mass/day for females was accepted as the LOAEL value. Considering that males were much more sensitive to 2-NT effects than females, a dose of 25 mg/kg b.m./day set for males as the LOAEL value, was taken as a basis for the calculation of the MAC value. Having assumed four coefficients of un-certainty, the MAC value for NT was calculated at the level of 11 mg/m3. The recommended MAC values apply to individual NT isomers (2-NT, 3-NT and 4-NT) and to their mixture as a whole. It has been suggested to mark NT with ―Sk‖ — skin absorbed substance, and in view of its methemoglobinogenic effect, to adopt 2% MetHb in blood as the biological exposure index (BEI), like for all methemoglobinogenic substances.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 2 (60); 93-132
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dinitrotoluen – mieszanina izomerów
Dinitrotoluene
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137362.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dinitrotoluen
działanie toksyczne
narażenie zawodowe
NDS
dinitrotoluene
toxicity
occupational exposure
MAC
Opis:
Dinitrotoluen techniczny (DNT) jest mieszaniną sześciu izomerów o przybliżonym składzie: około 76% 2,4-DNT, 19% 2,6-DNT i około 5% pozostałych izomerów, tj.: 2,3-, 2,5, 3,4- i 3,5-DNT. Związek jest głównie stosowany jako substrat do wytwarzania diizocyjanianu toluenu i diaminotoluenu do produkcji pianek poliuretanowych oraz do produkcji materiałów wybuchowych. Szacuje się, że w Polsce na DNT jest narażonych kilkaset osób. DNT w znaczących ilościach może wchłaniać się w drogach oddechowych, z przewodu pokarmowego oraz przez skórę. Nie ma danych w dostępnym piśmiennictwie dotyczących ostrych zatruć tym związkiem u ludzi. Na podstawie wyników badań epidemiologicznych 183 górników narażonych na techniczny DNT przez ponad 20 lat wykazano, u 25% osób z badanej grupy: objawy uszkodzenia wątroby (wzrost aktywności AlAT, AspAT i γ-GTP), niedokrwistość lub problemy z oddychaniem, a u około 50% stwierdzono zwiększone wydalanie z moczem markerów nefrotoksyczności (α1-mikroglobuliny, α-GST). W badaniach większej (500 osób) kohorty stwierdzono występowanie nowotworów nerek (14 przypadków) oraz nowo-tworów dróg moczowych (6 przypadków). Wykazano, na podstawie wyników badań toksyczności ostrej, że techniczny DNT należy do związków szkodliwych, zgodnie z klasyfikacją UE. W badaniach na królikach związek nie wykazywał działania drażniącego. W badaniach podprzewlekłych przeprowadzonych na szczurach, które otrzymywały w paszy techniczny DNT w dawkach: 37,5; 75 lub 150 mg/kg/dzień przez 4 tygodnie, wykazano, oprócz spadku masy ciała po dwóch większych dawkach DNT, także istotny wzrost poziomu methemoglobiny i retikulocytów we krwi oraz ciałek Heinza w krwinkach czerwonych. Zmiany patologiczne w narządach wewnętrznych obserwowane u samców obejmowały odbarwienia i nieregularności powierzchni wątroby. Techniczny DNT w badaniach przewlekłych wywoływał nowotwory (głównie wątroby i dróg żółciowych) u szczurów oraz nowotwory nerek u myszy samców. IARC nie zaproponował klasyfikacji mieszaniny izomerów dinitrotoluenu, natomiast dwa izomery 2,4-DNT i 2,6-DNT zaliczył do grupy 2B, czyli związków o możliwym działaniu rakotwórczym dla człowieka. Przeprowadzono przewlekłe doświadczenie na szczurach, którym podawano w paszy DNT o składzie: około 98,5% 2,4-DNT lub około 1,5% 2,6-DNT. Po najmniejszej zastosowanej dawce (0,57 mg/kg/dzień dla samców i 0,71 mg/kg/dzień dla samic) nie stwierdzono skutków działania toksycznego DNT. Obserwowano jedynie łagodne nowotwory skóry (częstość występowania nieistotna statystycznie) oraz ogniska rozrostowe miąższu wątroby (również nieistotne statystycznie w porównaniu z grupą kontrolną), niemające znaczenia w przeniesieniu tych skutków na ludzi, dlatego najmniejszą stosowaną w tym doświadczeniu dawkę DNT przyjęto za wartość NOAEL związku. Wychodząc z wartości NOAEL równej 0,57 mg/kg, a także przyjmując odpowiednie współczynniki nie-pewności, obliczono wartość NDS dinitrotoluenu na poziomie 0,33 mg/m3. Zaproponowano, aby normatyw był dodatkowo oznaczony literami: Sk – substancja wchłania się przez skórę oraz Rakotw. Kat. 2 – substancja rozpatrywana jako rakotwórcza dla człowieka. Ze względu na działanie methemoglobinotwórcze związku zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% MetHB we krwi jak dla wszystkich substancji methemoglobinotwórczych.
Technical dinitrotoluene (DNT) is a mixture of six isomers composed of 2,4-DNT (approx. 76%), 2,4-DNT (approx. 19%) and the remaining isomers, i.e. 2,3-, 2,5-, 3,4- and 3,5-DNT (approx. 5%). It is mostly applied as a substrate in the production of toluene diisocyanate and diaminotoluene used in the manufacturing of polyurethane foams and explosives. It has been estimated that in Poland there are several hundred DNT-exposed persons. Dinitroulene may be absorbed via the pulmonary and gastrointestinal tracts or through the skin. In the available literature there are no data on acute DNT intoxication in humans. Based on epidemiological studies it has been reported that in a group of 183 miners exposed to technical DNT for 20 years, 25% showed symptoms of liver damage (increased activity of AlAT, AspAT, and γ-GTP), anemia and respira-tion problems, whereas in 50% of the miners an increased excretion of nephrotoxic markers with urine (α1-microglobulin, α-GST) was observed. The study carried out on a larger (500 persons) cohort revealed 14 cases of kidney cancer and 6 cases of cancer of urinary tracts. Based on the studies of acute toxicity, it has been shown that, according to EU classification, technical DNT is a harmful compound. The studies performed on rabbits did not show any irritation signs in rabbits. The studies carried out on rats which were administrated technical DNT in three doses (37.5, 75 and 150 mg/kg/day) for four weeks revealed, besides body weight loss after two higher doses, a significant increase in the levels of methemoglobin and reticulocytes in blood, as well as in Heinz-body red blood cell counts. Pathologic changes in internal organs observed in male rats comprised depigmentation and irregularities on the surface of the liver. In the studies of chronic effects, technical DNT induced cancers mostly of the liver and bile ducts in rats and kidney cancer in male mice. The International Agency for Research on Cancer (IARC) has not proposed any classification of DNT isomer mixture; however, it categorized two isomers 2,4- and 2,6-DNT in group 2B – possibly carcinogenic to humans. A long-term experiment has been carried out on rats given DNT in fodder in the mixture of ap-prox. 98.5% of 2,4-DNT and 1.5% of 2,6-DNT. After the lowest dose (0.57 mg/kg/day for males and 0.71 mg/kg/day for females) of this compound no toxic effects were observed. Only benign neoplasms of the skin (statistically insignificant incidence) and the foci of liver parenchyma proliferation (also statistically insignificant compared to controls) were found, but insignificant as regards the extrapolation of these effects to humans. Therefore, the lowest DNT dose has been adopted as the value of its no-observed adverse effect level (NOAEL). Taking the value of NOAEL equal 0.57 mg/kg, as well as respective coefficients of uncertainty, the max-imum admissible concentration (MAC) for DNT was calculated at the level of 0.33 mg/m3. It has been sug-gested that DNT should be additionally marked with “Sk” – skin-absorbed substance and “Carcinogenic, cate-gory 2”. In view of the methemoglobinogenic property of this compound, MetHb concentration of 2% in blood as BEI value was proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 1 (59); 1-34
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Aminoetanol
Ethanolamine
Autorzy:
Ligocka, D.
Powiązania:
https://bibliotekanauki.pl/articles/137830.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-aminoetanol
działanie toksyczne
narażenie zawodowe
NDS
2-aminoethanol
toxicity
MAC (TWA) value
occupational exposure
Opis:
2-Aminoetanol jest bezbarwną, higroskopijną, silnie zasadową cieczą, o słabym rybnoamoniakalnym zapachu. Związek występuje naturalnie w organizmie człowieka. Stwierdzono obecność 2-aminoetanolu w winie (7 ÷ 15 mg/l) oraz w śliwkach (7 ÷ 43 mg/kg). Związek jest stosowany w syntezie związków powierzchniowo czynnych, emulgatorów, płynów do polerowania, płynów do trwałej ondulacji, do dyspersji środków ochrony roślin, do zmiękczania skór oraz jako środek pochłaniający CO2 i H2S podczas oczyszczania gazu ziemnego, a także jako rozpuszczalnik i(lub) dodatek emulgujący, m.in. do kremów i lotonów. Szacuje się, że w Polsce kilkadziesiąt osób jest potencjalnie narażonych na ten związek. W testach przeprowadzonych w warunkach in vitro i in vivo wykazano, że związek nie działa genotoksycznie i mutagennie. Nie ma w dostępnym piśmiennictwie danych świadczących o działaniu rakotwórczym tego związku. Nie stwierdzono też wpływu 2-aminoetanolu na rozrodczość. W doświadczeniu będącym podstawą ustalenia wartości najwyższego dopuszczalnego stężenia (NDS) 2-aminoetanolu różne gatunki zwierząt poddawano ciągłemu narażeniu inhalacyjnemu w zakresie stężeń 12,5 ÷ 250 mg/m3 w komorach inhalacyjnych (narażenie całego organizmu). U zwierząt obserwowano nasilanie zmian skórnych oraz zaburzenia funkcji układu pokarmowego związane z podrażnieniem błony śluzowej proporcjonalne do wielkości stosowanej dawki. Zwierzęta podczas czyszczenia sierści połykały znaczne ilości 2-aminoetanolu, na co wskazywało m.in. zwiększone o około 40% pobranie wody. Po narażeniu na 2-aminoetanol o stężeniu 12,5 mg/m3 nie obserwowano zmniejszenia przyrostu masy ciała i dlatego stężenie to przyjęto za wartość NOAEL. Po narażeniu na 2-aminoetanol o stężeniu 30 mg/m3 obserwowano u zwierząt zmniejszenie apetytu i zmniejszenie o 10% przyrostu masy ciała, zwiększenie konsumpcji wody (o 40%) oraz łuszczenie skóry i zmniejszenie grubości naskórka. Stężenie 30 mg/m3 przyjęto za wartość LOAEL 2-aminoetanolu. 2-Aminoetanol o większym stężeniu powodował zmiany na skórze, które nasilały się aż do wystąpienia martwicy przylegających warstw mięśni, obserwowano również wystąpienie apatii, letargu oraz zmiany w płucach, wątrobie i nerkach. Obliczając wartości NDS 2-aminoetanolu, uwzględniono wartości współczynników: A = 2 – dla różnic wrażliwości osobniczej oraz B = 2 – dla różnic międzygatunkowych. Z wyliczeń wynikało, że wartość NDS 2-aminoetanolu należałoby utrzymać na obecnie obowiązującym poziomie, tzn. 3 mg/m3, oraz ze względu na działanie drażniące 2-aminoetanolu, należałoby stężenie 9 mg/m3 przyjąć za wartość NDSCh. Zaproponowano jednak przyjęcie wartości dopuszczalnych stężeń 2-aminoetanolu na poziomie zbliżonym do państw w Unii Europejskiej, tj. OEL – 2,5 mg/m3 i short – 7,5 mg/m3 (zgodnie z przyjętym podejściem do wartości chwilowej, jako 3-krotnej wartości NDS). Utrzymanie stężeń 2-aminoetanolu na tym poziomie zabezpieczy pracowników przed silnym działaniem drażniącym związku na skórę, oczy i błony śluzowe górnych dróg oddechowych. Nie ma danych w dostępnym piśmiennictwie dotyczących przyjęcia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) 2-aminoetanolu. Ze względu na działanie drażniące 2-aminoetanolu proponuje się także oznaczenie związku literą „I”.
Ethanolamine (MEA) is viscous liquid, strongly alkaline and can cause severe irritation. Because of its low vapour pressure, ethanolamine should pose very little inhalation hazard at ordinary temperature. According to the study of Weeks et al (1960), NOAEL of 12.5 mg/m3 was established for irritating effect. The recommended 8-hour TWA was 3 mg/m 3 and a STEL (15 mins) of 9 mg/m 3 were recommended to prevent exposure to irritating levels. There are no data supporting BEI value. A „skin” notation and „I” – irritation notations were recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 4 (54); 97-116
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bromoeten
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138084.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
bromoeten (bromek winylu)
toksyczność
narażenie zawodowe
NDS
bromoethene (vinyl bromide)
toxicity
occupational exposure
MAC
Opis:
Bromoeten (bromek winylu, BE) jest bezbarwnym, łatwopalnym gazem o ostrym zapachu. Stosowany jest jako związek przejściowy w syntezie organicznej i w produkcji polimerów, kopolimerów, środków zmniejszających palność (flame retardant), farmaceutyków oraz fumigantów. Zawodowe narażenie na bromoeten może występować w procesie produkcji, przerobu i konfekcjonowania tego związku. Ze względu na niską temperaturę wrzenia (15,8 oC) bromoeten w środowisku pracy występuje w postaci gazowej, dlatego dominującą drogą narażenia jest droga inhalacyjna. W Polsce na bromoeten jest narażonych 100 osób pracujących przy syntezie organicznej, syntezie polimerów oraz przy produkcji farmaceutyków i fumigantów. Nie ma w dostępnym piśmiennictwie danych dotyczących skutków toksycznego działania bromoetenu dla ludzi. U zwierząt laboratoryjnych bromoeten o dużych stężeniach wykazuje ostre działanie hepatotoksyczne i działa depresyjnie na ośrodkowy układ nerwowy. Przewlekłe narażenie szczurów na związek o małym stężeniu 44 mg/m3 (10 ppm) wywoływało powstanie naczyniakomięsaka krwionośnego wątroby. Bromoeten jest analogiem związku o udowodnionym działaniu rakotwórczym dla człowieka – chlorku winylu. Działanie rakotwórcze bromoetenu jest spowodowane metabolizmem tego związku do tlenku 2-bromoetylenu, tworzącego etenoaddukty z DNA. Z danych toksykokinetycznych wynika, że potencjał rakotwórczy bromoetenu w zakresie małych stężeń jest większy (około 3 razy) niż chlorku winylu. Ponieważ brak jest danych dotyczących rakotwórczego działania bromoetenu u ludzi, związek ten jest w Polsce klasyfikowany jako rakotwórczy kategorii 2., a wg IARC w grupie 2.A. Za podstawę do wyliczenia wartości NDS przyjęto ilościową ocenę rakotwórczego działania bromoetenu, opracowaną na podstawie danych dotyczących częstości powstawania naczyniakomięsaka krwionośnego u szczurów samców, narażanych na bromoeten o stężeniach 44 ÷ 1100 mg/m3. Wykorzystując zależność między stężeniem bromoetenu w powietrzu środowiska pracy a prawdopodobieństwem powstania naczyniakomięsaka krwionośnego przy 40-letnim okresie narażenia zawodowego, obliczono stężenia bromoetenu przy założonym poziomie ryzyka. Proponuje się, aby za wartość najwyższego dopuszczalnego stężenia (NDS) przyjąć stężenie wynoszące 0,4 mg/m3, któremu odpowiada dodatkowe ryzyko powstania naczyniakomięsaka krwionośnego równe 0,001. W kategoriach populacyjnych oznacza to, że u jednej osoby spośród 1000 zatrudnionych przez 40 lat pracy w narażeniu na bromoeten o stężeniu 0,4 mg/m3 może rozwinąć się nowotwór – naczyniakomięsak krwionośny wątroby. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i wartości dopuszczalnego stężenia w materiale biologicznym (DSB) bromoetenu.
Bromoethene (vinyl bromide,VB) is a colorless, flammable gas with a characteristic pungent odor. It is used as a transient compound in organic synthesis, and also in the production of polymers, copolymers, flame retardants, pharmaceutics and fumigants. Occupational exposure to bromoethene may occur in production processes, processing and finishing. Because of its low boiling point (15.8oC), bromoethene has the form of a gas in the occupational environment, and thus inhalation is the major route of exposure. In Poland, 100 workers involved in organic and polymer syntheses, as well as in the manufacturing of pharmaceutics and fumigants are exposed to this compound. In the available literature, there are no data concerning toxic effects of bromoethene in humans. In laboratory animals, high concentrations of bromoethene have an acute hepatoxic effect and a depressant effect on the central nervous system. It has been reported that chronic exposure of rats to a low concentration of 44 mg/m3 (10 ppm) induces hemangiosarcoma of the liver. Bromoethene is an analog of vinyl chloride, a well documented human carcinogen. The carcinogenic effect of bromoethene is generated by its metabolism to 2-bromoethylene oxide that produces cyclic etheno adducts with DNA. Toxicokinetic data show that the carcinogenic potential of this compound within the range of low concentrations is about threefold higher than that of vinyl chloride. As there are no data with evidence that bromoethene is carcinogenic to humans, in Poland this compound is categorized into group 2, and according to the International Agency for Research on Cancer (IARC) into group 2A – probably carcinogenic to humans. A quantitative assessment of the carcinogenic effect of bromoethene, based on data on the incidence of hemangiosarcoma of the liver in rats exposed to this compound in concentrations of 44–1100 mg/m3, was adopted as the basis for calculating the MAC value. The concentration of bromoethene was calculated with the relationship between the concentration of bromoethene in the ambient air of the occupational environment and the probability of the development of hemangiosarcoma after 40-year occupational exposure. A MAC value of 0.4 mg/m3 is suggested; it corresponds to the additional risk of hemangiosarcoma of 0.001. In population terms, this means that hemangiosarcoma of the liver may develop in one person per 1000 people exposed to bromoethene of 0.4 mg/m3 for 40 years. There are no grounds for setting the value of short-term maximum admissible concentration or the value of maximum concentration in the biological material for bromoethene.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 2 (72); 13-29
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heksan-2-on
Hexsan-2-one
Autorzy:
Soćko, R.
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138014.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
heksan-2-on
toksyczność
NDS
hexsan-2-one
toxicity
MAC-values
Opis:
Heksan-2-on jest bezbarwną, lotną cieczą o ostrym, gryzącym zapachu podobnym do acetonu, która jest stosowana jako rozpuszczalnik farb, lakierów, nitrocelulozy, żywic, tłuszczów, wosków i olejów oraz stanowi składnik zmywaczy lakierów i pokostu. Heksan-2-on w warunkach przemysłowych, ze względu na dużą lotność, wchłania się głównie przez układ oddechowy, a ponadto w postaci ciekłej wchłania się przez nieuszkodzoną skórę oraz drogą pokarmową. W obowiązującym w Polsce wykazie niebezpiecznych substancji chemicznych heksan-2-on został zaklasyfikowany jako produkt łatwopalny i toksyczny po wchłonięciu drogą inhalacyjną oraz o możliwym szkodliwym działaniu na funkcje rozrodcze człowieka. Pary heksan-2-onu mogą wywoływać uczucie senności i zawroty głowy. Heksan-2-on o dużych stężeniach wywołuje u ludzi działanie drażniące na oczy i błony śluzowe dróg oddechowych. W przypadku przewlekłego narażenia na heksan-2-on u ludzi narządem krytycznym jest obwodowy układ nerwowy. Skutkiem krytycznym jest zespół objawów klinicznych, zmian elektrofizjologicznych i morfologicznych w nerwach i mięśniach określany mianem polineuropatii obwodowej, czuciowej lub czuciowo-ruchowej. Na podstawie wyników badań doświadczalnych przeprowadzonych na zwierzętach narażanych przewlekle potwierdzono działanie heksan-2-onu na obwodowy układ nerwowy. Na podstawie wyników badań doświadczalnych przeprowadzonych na zwierzętach w warunkach narażenia ostrego można przypuszczać działanie heksan-2-onu na ośrodkowy układ nerwowy. Związek wywołuje działanie narkotyczne, zniesienie odruchu rogówkowego, zwolnienie pracy serca, obniżenie temperatury ciała i częstości oddychania oraz zmiany w zachowaniu zwierząt, a ponadto działa drażniąco na skórę, oczy i błony śluzowe dróg oddechowych. Nie ma doniesień o działaniu mutagennym i rakotwórczym heksan-2-onu. Na podstawie wyników badań przeprowadzonych na zwierzętach można stwierdzić, że związek wpływa ujemnie na rozrodczość. Został zaklasyfikowany jako produkt o możliwym szkodliwym działaniu na funkcje rozrodcze człowieka. W celu ustalenia wartości najwyższego dopuszczalnego stężenia heksan-2-onu uwzględniono wyniki 6-miesięcznego doświadczenia inhalacyjnego przeprowadzonego na szczurach, w którym wartość LOAEL wyniosła 204,85 mg/m3. U zwierząt narażonych obserwowano zwolnienie szybkości przewodzenia o 76% w nerwach obwodowych (nerw kulszowy) i zmiany neuropatologiczne (wieloogniskowe obrzmienia aksonów). Wyliczona z wartości LOAEL wartość NDS wynosi 10 mg/m3. Heksan-2-on o dużych stężeniach wykazuje działanie drażniące, dlatego nie ustalono dla związku wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) 2,5-heksanodionu w moczu równą 0,4 mg/l dla próbek niepoddanych hydrolizie. Ponieważ heksan 2-on wchłania się przez skórę, zaproponowano oznaczenie go literami „Sk”. Zaproponowana wartość normatywu higienicznego powinna zabezpieczyć pracowników przed działaniem związku na układ nerwowy.
Hexsan-2-one is a colorless, volatile liquid with a characteristic, pungent, acetone-like odor. Hexsan-2-one is a ketonic solvent used in a wide variety of materials, including paints, lacquers, ink thinners, nitrocellulose, glues, resins, oils, fats, waxes and in printing plasticized fabrics. Acute intoxication of hexsan-2-one causes eye and upper respiratory tract irritation, coma, narcosis and death. Several investigators have reported peripheral and central distal axonopathy in animals exposed by inhalation to hexsan-2-one. Chronic hexsan-2-one intoxication leads to neurologic disturbances with characteristic electrodiagnostic abnormalities. Muscle weakness and electromyographic abnormalities are predominantly distal. Sensory deficits are distal and limited to pain, touch and temperature discrimination, with occasional loss of vibration sense. On the basis of literature data 204.85 mg/m3 has been accepted as a LOAEL and the MAC value of hexsan-2-one in Poland has been established at 10 mg/m3 with Sk symbols (substance absorbed through the skin).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2008, 3 (57); 159-178
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
4-Metoksyfenol
4-Methoxyfenol
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138421.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
4-metoksyfenol
toksyczność
narażenie zawodowe
NDS
4-methoxyphenol
toxicity
occupational exposure
MAC
Opis:
4-Metoksyfenol (4-MF) jest białą substancją w postaci krystalicznych płatków lub o konsystencji wosku. Jest stosowany jako przeciwutleniacz dla tłuszczów, olejów, witamin i kosmetyków, inhibitor polimeryzacji monomerów akrylowych i metakrylowych oraz różnych monomerów winylowych. Jest także związkiem pośrednim w produkcji barwników, farmaceutyków, plastyfikatorów i stabilizatorów. Stosowany jest ponadto jako stabilizator chlorowanych węglowodorów, etylocelulozy, olejów smarowych w przemyśle włókienniczym oraz do hamowania skutków działania promieniowania UV na skórę i do odbarwiania skóry. 4-Metoksyfenol jest także stosowany jako lek odbarwiający resztkową pigmentację skóry w przypadku bielactwa (vitiligo universalis) oraz w leczeniu czerniaka skóry. U pacjentów, którym 4-metoksyfenol podano w postaci wlewu dotętniczego w dużej ilości (27 g), wystąpiły objawy uszkodzenia wątroby i nerek oraz spadek stężenia hemoglobiny. W dostępnym piśmiennictwie dane na temat narażenia zawodowego na 4-metoksyfenol są nieliczne. Opisano dwa przypadki zawodowego bielactwa skóry (occupational leucoderma) u pracowników mających kontakt z 4-metoksyfenolem. Jeden z pracowników był narażony na ten związek przez 11 lat, a drugi przez 3 lata. Odbarwienie obejmowało skórę na grzbiecie obu dłoni oraz na przedramionach i skroni. Toksyczność ostra 4-metoksyfenolu jest stosunkowo mała. Po podaniu dootrzewnowym 4-metoksyfenolu u zwierząt obserwowano objawy niedotlenienia (anoksja) i paraliż, a większe dawki 4-metoksyfenolu działały narkotycznie. 4-Metoksyfenol wykazuje działanie drażniące na skórę i oczy, a po aplikacji na skórę królików wywołuje jej znaczną martwicę. W testach przeprowadzonych na samicach świnek morskich wykazywał umiarkowane działanie uczulające. W badaniach przewlekłych przeprowadzonych na szczurach 4-metoksyfenol podawano w paszy o stężeniach 0,02 ÷ 5% przez okres 4 ÷ 104 tygodni. Po narażeniu na 4-metoksyfenol o najmniejszym stężeniu nie obserwowano efektów toksycznych, natomiast związek o większym stężeniu powodował spadek przyrostu masy ciała, rozrost nabłonka przedżołądka, nadżerki i owrzodzenia. Po dłuższym czasie narażenia (52 tygodnie) nadżerki i owrzodzenia występowały także w gruczołowej części żołądka. Przedłużenie narażenia na 2-procentowy 4-metoksyfenol w paszy do 104 tygodni prowadziło do pojawienia się zmian nowotworowych w postaci brodawczaków i raków kolczystokomórkowych. 4-Metoksyfenol nie jest klasyfikowany pod kątem rakotwórczości. NTP nie prowadziło badań nad działaniem rakotwórczym i genotoksycznym tego związku. 4-Metoksyfenol nie działa także mutagennie. W dostępnym piśmiennictwie nie znaleziono także danych na temat działania embriotoksycznego, fetotoksycznego i teratogennego związku. Za podstawę ustalenia wartości NDS 4-metoksyfenolu przyjęto wyniki badań Hodge`a i in. wykonane na szczurach obu płci (po 10 w grupie). Szczury otrzymywały w paszy przez okres do 7 tygodni 4-metoksyfenol o stężeniach 0,02 ÷ 5%. Nie wykazano u zwierząt narażanych na 0,02-procentowy 4-metoksyfenol żadnych zmian toksycznych w porównaniu ze zwierzętami z grupy kontrolnej; większe stężenia związku powodowały już spadek przyrostu masy ciała zwierząt. Na podstawie otrzymanych wyników stężenie 0,02-procentowe związku w paszy uznano za wartość NOEL 4-metoksyfenolu. Po przeliczeniu tej dawki na masę ciała człowieka i zastosowaniu łącznego współczynnika niepewności (równego 36) wyliczono wartość NDS 4-metoksyfenolu, która wynosi 5 mg/m3. Wartość ta powinna zabezpieczyć pracowników przed potencjalnym działaniem układowym i drażniącym związku. Nie ma podstaw do ustalenia wartości NDSCh i DSB 4-metoksyfenolu. Ze względu na działanie szkodliwe związku na skórę i prawdopodobne wchłanianie tą drogą zaproponowano także oznakowanie 4- metoksyfenolu literami „Sk”.
4-Methoxyfenol (4-MF) is a white substance that occurs in the form of crystalline flakes or in the consistency of wax. It has a variety of applications in several industries. Due to its antioxidative properties it is used against peroxidation of fats, oils, vitamins and cosmetics. It is also used as an inhibitor of acrylic and meta-acrylic monomer polymerization and various vinyl polymers; as an agent stabilizing chlorinated hydrocarbons, ethyl cellulose, lubricating oil in the textile industry; as an inhibitor of UV radiation effects on the skin and as a skin depigmenting agent; as a chemical intermediate in the production of dyes, pharmaceutics, softening and stabilizing agents; as a drug decolorizing skin residual pigmentation in the case of vitiligo universalis; and in the treatment of melanoma in the skin. Patients who received a high dose (27 g) of 4-MF in intra-arterial infusion showed symptoms of liver and kidney damage as well as a decreased concentration of hemoglobin. In the available literature, reports on occupational exposure to 4-MF are rather scarce.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 101-119
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mangan i jego związki nieorganiczne – w przeliczeniu na Mn
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137231.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
mangan
narażenie zawodowe
toksyczność
NDS
manganese
occupational exposure
toxicity
MAC
Opis:
Mangan (Mn) jest metalem przejściowym, który występuje na: 0, II, III, IV, VI i VII stopniu utlenienia. Metal ten jest stosowany do produkcji stopów metali żelaznych i nieżelaznych, a jego związki mają wszechstronne zastosowanie. Narażenie zawodowe na mangan występuje: w górnictwie rud manganu, przy jego produkcji i jego stopów, podczas prac spawalniczych oraz podczas otrzymywania i stosowania jego związków. Wielkość narażania zawodowego na mangan na ogół nie przekracza 1 mg/m3 (frakcja wdychana pył całkowity) oraz 0,1 mg/m3 (frakcja respirabilna). Według danych Instytutu Medycyny Pracy w Łodzi z 1994 r. w Polsce było 3505 osób narażonych zawodowo na mangan o stężeniach przekraczających wartość najwyższego dopuszczalnego stężenia (NDS) wynoszącą 0,3 mg/m3, natomiast wg danych Głównej Inspekcji Sanitarnej z 2007 r. na mangan i jego związki nieorganiczne (w przeliczeniu na Mn) było narażonych 1011 pracowników. W przewlekłym zatruciu manganem u ludzi przeważają zaburzenia ze strony układu nerwowego i oddechowego. Po stosunkowo małych wielkościach narażenia zawodowego u pracowników obserwowano subkliniczne zmiany neurobehawioralne. U zwierząt laboratoryjnych w warunkach narażenia powtarzanego na mangan obserwowano zmiany w metabolizmie neuroprzekaźników oraz zaburzenia neuroczynnościowe. Mutagenne działanie manganu było słabo zaznaczone. Mangan nnie jest klasyfikowany jako czynnik rakotwórczy. Brak jest również jednoznacznych dowodów na jego wpływ na rozrodczość. Wydaje się, że ze względu na możliwą kumulację skutków działania manganu na ośrodkowy układ nerwowy (OUN) bardziej wartościowe do ustalenia wartości NDS są wyniki badań dotyczące narażenia skumulowanego. Na podstawie wyników pracy Roelsa i in. wykazano, że skumulowane narażenie na mangan o stężeniu 3575 mg/m3 razy lata pracy w narażeniu (frakcja wdychalna) i stężenie 0,73 mg/m3 razy lata pracy w narażeniu (frakcja respirabilna) powodowało występowanie wczesnych objawów działania na OUN u 5% populacji. Jeśli przyjmiemy 20 lat pracy w narażeniu na mangan, to stężenia manganu w powietrzu środowiska pracy wyniosą odpowiednio 0,178 (frakcja wdychalna) oraz 0,036 mg/m3 (frakcja respirabilna). W badaniu Myersa i in. w grupie 489 górników narażonych na mangan w postaci pyłu całkowitego o stężeniu 0,21 mg/m3 (średnia arytmetyczna) przez średni okres 10,8 lat pracy nie obserwowano subklinicznych zaburzeń neurobehawioralnych związanych z narażeniem. Na podstawie wyników wymienionych prac wykazano, że można zaproponować przyjęcie stężenia 0,2 mg/m3 za dopuszczalną wartość stężenie manganu zawartego we wdychalnej frakcji pyłu. Ponieważ mangan we frakcji respirabilnej stanowi około 25% manganu obecnego w pyle całkowitym, dlatego proponuje się ustalenie wartości NDS dla tej frakcji jako ¼ obliczonej wcześniej wartości NDS, tj. 0,05 mg/m3. Proponuje się przyjęcie wartości NDS dla manganu na poziomach 0,2 mg/m3 i 0,05 mg/m3 odpowiednio dla frakcji wdychalnej i frakcji respirabilnej. Proponowane wartości powinny chronić pracowników przed subklinicznymi zaburzeniami neurobehawioralnymi wywołanymi narażeniem na mangan. Nie znaleziono merytorycznych podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) manganu oraz jego dopuszczalnego stężenia w materiale biologicznym (DSB).
Manganese (Mn) is a transition metal, which occurs in several oxidation states (0, II, III, IV, VI and VII) and forms a range of inorganic compounds. Manganese is a very hard, brittle metal, which is used in the production of ferrous and non-ferrous metal alloys, including those essential to steel making. This metal increases the strength of steel alloys. Iron and steel production accounts for 85 ÷ 95% of the manganese market. Its compounds have comprehensive applications. In industrial conditions, there is occupational exposure especially in mining, metal smelting, steel production, battery manufacture, welding, agricultural production and use, and in pigment, paint and glass making. Workers can be exposed to dust and fumes of manganese-containing compounds in a range of particle sizes where the ratio of inhalable to respirable fractions varies within and between industries. Manganese is an essential element; it is involved in bone formation and amino acid, carbohydrate and cholesterol metabolism. It is a component of several enzymes and it activates others. It is estimated that in Poland in 1994 about 3500 workers were exposed to manganese at levels above the maximum admissible concentration (MAC) of 0.3 mg/m3. However, according to data provided by the Chief Sanitary Inspectorate, about 1000 persons were exposed to manganese and its inorganic compounds in 2007. In persons chronically exposed to manganese and its compounds via inhalation disorders of both the central nervous and the respiratory system predominate. Subclinical neurobehavioral changes have been observed in workers occupationally exposed to relatively low levels of this metal. There have been changes in neurotransmitters metabolism and neurofunctional disorders in laboratory animals repeatedly exposed to manganese. The mutagenicity of this metal was weakly marked. Manganese is not classified as a chemical carcinogen. On the basis of the results of epidemiological examinations the MAC values for manganese and its inorganic compounds were established at 0.2 mg/m3 and 0.05 mg/m3 for inhalable and respirable fractions, respectively. No STEL (15 mins) and BEI values have been proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 1 (71); 27-58
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Etoksyetanol
2-Etoxyethanol
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/137569.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-etoksyetanol
toksyczność
narażenie zawodowe
NDS
2-ethoxyethanol
toxicity
occupational exposure
MAC
Opis:
2-Etoksyetanol (2-EE) jest bezbarwną cieczą o temperaturze wrzenia 135 oC stosowaną w wielu gałęziach przemysłu (chemicznego, metalurgicznego, mechanicznego, elektronicznego i meblowego) oraz w takich produktach powszechnego użytku, jak: atrament, kosmetyki, a także środki czyszczące. Na podstawie wyników badań toksyczności ostrej na zwierzętach wykazano, że według kryteriów klasyfikacji 2-etoksyetanol należy do związków szkodliwych. W warunkach narażenia zawodowego wchłania się do organizmu w drogach oddechowych oraz przez skórę (w postaci par i ciekłej). Na podstawie wyników zarówno badań na zwierzętach doświadczalnych (szczurach, myszach, królikach i psach), jak i badań epidemiologicznych ludzi narażonych zawodowo na działanie tego związku stwierdzono, że wykazuje on działanie hematotoksyczne oraz wpływa na rozrodczość. Skutki te u zwierząt doświadczalnych obserwowano jedynie po narażeniu na działanie związku o dużych stężeniach lub po podaniu zwierzętom dużych jego dawek. U zwierząt doświadczalnych 2-etoksyetanol wykazywał także działanie embriotoksyczne, fetotoksyczne i teratogenne. 2-Etoksyetanol nie wykazywał działania mutagennego ani rakotwórczego.
2-Etoxyethanol (2-EE) is a colorless liquid with the boiling point of 135oC. It is used in numerous industries (chemical, metallurgic, mechanic, electronic and furniture), as well as in commonly used products, such as ink, cosmetics and detergents. The results of animal studies on acute toxicity have provided evidence that, according to the criteria of categorization, 2-etoxiethanol is a hazardous compound. In occupational exposure, 2-EE is absorbed by the body via the respiratory tract and the skin (in vapor and liquid forms). Both experimental studies on animals (rats, mice, rabbits and dogs) and epidemiological studies in human populations exposed to 2-EE have shown that this compound has a hematotoxic effect and affects reproduction. In laboratory animals these effects have been observed only after exposure to high concentrations or administration of high doses. It has also been observed that 2-EE hasembriotoxic, fetotoxic and teratogenic effects, however, neither there has been neither mutagenic nor carcinogenic effects. Epidemiological studies in persons occupationally exposed to this compound have demonstrated its hematotoxic effect and its impact on reproduction in men. The effects have been observed after exposure to ~10 mg/cm3, at the border of statistical significance; at the same time persons under study were additionally exposed to other chemical agents. The results of epidemiological studies have been a basis for estimating the maximum admissible concentration (MAC) of 2-EE, and the concentration of 10 mg/cm3is the value of no-observed adverse effect level (NOAEL). After using relevant coefficients of uncertainty the calculated MAC value of 2-EE is for 5 mg/cm3. This value should protect workers against potential hematological and spermatotoxic effects of this compound. There are no grounds for establishing its STEL value. In view of the extensive absorption of 2-EE by the skin, the compound should have the “Sk” symbol and because of its embriotoxic, fetotoxic and teratogenic effects, observed in animals, it is also suggested to use the “Ft” symbol as its additional denotation. The Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment at its 59th meeting has adopted for a 2-year period a MAC value of 2-EE proposed by SCOEL of 8 mg/m3. On the basis of the toxicokinetic model the value of the maximum admissible limit in biological material (BLV) is 60 mg of 2-ethoxyacetic acid/g creatinine in urine collected at the end of a working week.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 2 (68); 57-92
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pary rtęci i jej związki nieorganiczne
Mercury
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/138010.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
rtęć
toksyczność
narażenie zawodowe
NDS
mercury
toxicity
occupational exposure
MAC
Opis:
Rtęć jest metalem, który w temperaturze pokojowej występuje w stanie ciekłym. W przyrodzie występuje głównie w postaci cynobru (siarczek rtęciowy, HgS) oraz jako rtęć rodzima w postaci kropel lub krystalicznego amalgamatu srebra. Światowa produkcja rtęci w połowie lat 70. XX w. osiągnęła poziom około 10 000 t rocznie. Z uwagi na problem zanieczyszczenia środowiska w końcu lat 80. zużycie rtęci gwałtownie zmniejszyło się. Niektóre państwa (USA) wstrzymały całkowicie wydobycie rtęci. W ostatnich latach światowa produkcja ustabilizowała się na poziomie około 2500 t rocznie. Rtęć jest stosowana przy produkcji baterii alkalicznych, lamp fluorescencyjnych, lamp rtęciowych w przemyśle chloroalkalicznym (elektrolityczne otrzymywanie chloru i wodorotlenku sodowego) oraz chemicznym (produkcja farb, katalizator w procesach chemicznych). Rtęć jest stosowana także w urządzeniach kontrolno-pomiarowych (termometry, zawory ciśnieniowe, przepływomierze), w preparatach dentystycznych (amalgamaty) oraz w niewielkich ilościach w laboratoriach. Narażenie zawodowe na pary rtęci ma miejsce głównie przy wydobywaniu i przerobie rudy cynobrowej, a także przy otrzymywaniu chloru i ługu metodami elektrolitycznymi, przy produkcji stopów metali, barwników, fungicydów oraz przy produkcji i obsłudze takich przyrządów wypełnionych rtęcią, jak np.: przepływomierze, różnego rodzaju aparatura pomiarowa, termometry, barometry, prostowniki. Narażeni na rtęć są również pracownicy laboratoriów, pracowni naukowych, gabinetów dentystycznych i zakładów fotograficznych. W zakładach przemysłu chloroalkalicznego w różnych państwach stężenie rtęci w powietrzu wynosiło < 10 ÷ 430 mg/m3. Obserwowane stężenia rtęci w moczu u pracowników tych zakładów wynosiły od 0 do około 750 mg/l. W warunkach przemysłowych narażenie dotyczy wyłącznie narażenia drogą inhalacyjną na pary rtęci. Inne nieorganiczne związki rtęci praktycznie nie stwarzają ryzyka przy narażeniu inhalacyjnym. Według danych stacji sanitarno-epidemiologicznych w 2007 r. na pary rtęci powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. 0,025 mg/m3 było narażonych 48 pracowników przy produkcji wyrobów chemicznych. Dla nieorganicznych związków rtęci przekroczeń wartości NDS (0,05 mg/m3) nie zanotowano. Narządem krytycznym u ludzi w zatruciach ostrych parami rtęci są płuca. W przypadku narażenia zawodowego postać ostra występuje rzadko. Po narażeniu na pary rtęci o dużym stężeniu obserwowano wiele skutków ze strony układu nerwowego, m.in.: drżenia, chwiejność emocjonalną, bezsenność, zaburzenia pamięci, polineuropatie, zaburzenia w funkcjach poznawczych i motorycznych oraz zaburzenia widzenia. W przewlekłym narażeniu ludzi na rtęć i jej związki nieorganiczne obserwowano głównie skutki neurotoksyczne i nefrotoksyczne. Po narażeniu szczurów na pary rtęci o stężeniu 27 mg/m3 przez 2 h padło 20 z 30 zwierząt. Wartość DL50 dla szczurów po dożołądkowym podaniu chlorku rtęci(II) wynosi 25,9 mg Hg/kg. Na tej podstawie, zgodnie z klasyfikacją UE, rtęć i jej związki nieorganiczne można zaliczyć do związków toksycznych. W eksperymentach podprzewlekłych i przewlekłych nieorganiczne związki rtęci wykazywały głównie działanie nefrotoksyczne, zależnie od wielkości dawki. W ocenie działania rakotwórczego IARC zaklasyfikowała rtęć metaliczną i jej związki nieorganiczne do grupy 3., czyli związków nieklasyfikowanych pod względem działania rakotwórczego dla ludzi. W licznych doniesieniach wykazano, że chlorek rtęci(II) działał mutagennie, natomiast pary rtęci nie wykazywały takiego działania. Mimo że w przypadku narażenia ludzi dane na temat wpływu rtęci metalicznej i jej nieorganicznych związków na rozrodczość są niejednoznaczne, to jej wpływ na zwierzęta jest udowodniony. Ponadto, z uwagi na fakt, że rtęć przechodzi przez barierę łożyska, istnieją zalecenia, aby u kobiet w wieku rozrodczym maksymalnie ograniczyć narażenie na rtęć i jej związki. O ile większość danych uzyskanych na podstawie wyników badań przeprowadzonych na zwierzętach dotyczy badań nieorganicznych związków rtęci, zwłaszcza chlorku rtęci(II), to dane z badań epidemiologicznych dotyczą głównie narażenia zawodowego na pary rtęci. Nadmierne narażenie zawodowe na rtęć metaliczną (pary) i jej związki powoduje wystąpienie objawów psychiatrycznych, behawioralnych i neurologicznych i wiąże się również z uszkodzeniem nerek. Tak więc, krytycznymi narządami w przypadku chronicznego narażenia na rtęć i jej związki nieorganiczne są ośrodkowy układ nerwowy i nerki. Ustalenie zatem wartości NDS powinno dotyczyć takiej wartości stężeń, poniżej której nie pojawią się subkliniczne zmiany. Najwcześniejszymi obserwowanymi zmianami są zaburzenia neurobehawioralne pojawiające się w wyniku narażenia na pary rtęci, dlatego proponowana wartość NDS wyprowadzona będzie dla par rtęci, a otrzymany normatyw powinien zabezpieczyć pracowników przed szkodliwymi skutkami działania zarówno par rtęci, jak i jej związków nieorganicznych. Za podstawę ustalenia wartości NDS dla par rtęci i jej związków nieorganicznych przyjęto wyniki badań epidemiologicznych dotyczących wczesnych neurotoksycznych skutków wywieranych przez rtęć. Większość wyników tych badań wykazała większą korelację stanu zdrowia badanych osób z wynikami monitoringu biologicznego (stężenia Hg w moczu i we krwi) niż monitoringu powietrza, dlatego proponowane normatywy higieniczne są wyprowadzane na podstawie wielkości stężenia rtęci w moczu. Większość autorów badań epidemiologicznych przyjmuje wartość 35 μg/g kreatyniny w moczu za stężenie progowe, powyżej którego zaczynają się ujawniać szkodliwe skutki ze strony ośrodkowego układu nerwowego i nerek. Dane z metaanaliz wskazują jednak na możliwość toksycznego działania rtęci na zachowania człowieka już po narażeniu na stężenia rtęci w moczu w zakresie 20 ÷ 30 μg/g kreatyniny. W ocenie autorów jednej z metaanaliz ludzie narażeni na rtęć uzyskują gorsze wyniki z niektórych testów neurobehawioralnych, porównywalne z wynikami osiąganymi przez ludzi o 5 ÷ 20 lat starszych. Na podstawie argumentacji uzasadnienia normatywów Unii Europejskiej oraz wyników meta analiz uważamy, że należy przyjąć poziom 30 μg Hg/g kreatyniny za poziom zabezpieczający przed wystąpieniem zaburzeń behawioralnych. Wartość ta jest proponowaną wartością dopuszczalnego stężenia w materiale biologicznym (DSB). Ekstrapolując wyniki monitoringu biologicznego na stężenie rtęci w powietrzu, zalecanemu stężeniu rtęci w moczu (30 μg/g kreatyniny) będzie odpowiadało stężenie rtęci w powietrzu wynoszące 0,02 mg/m3. Wartość tę proponujemy przyjąć za wartość NDS. Zaproponowane wartości normatywne (NDS – 0,020 mg/m3 i DSB – 30 μg/g kreatyniny) są zgodne z normatywami przyjętymi w Unii Europejskiej. Tak zaproponowane normatywy higieniczne powinny zabezpieczyć pracowników przed szkodliwymi skutkami działania zarówno par rtęci, jak i jej związków nieorganicznych. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) rtęci i jej związków.
Mercury (Hg) is the only common metal which is liquid at conventional room temperature. It is found in nature mostly as cinnabar (mercuric sulfide, Hg5) and also as native mercury in the form of drops or silver crystalline amalgam. In the mid 1970s world production of mercury was around 10 000 tonnes per year. By the end of the 1980s the use of mercury had rapidly decreased because of its adverse environmental effects. In recent years its annual world production has stabilized at the level of about 2500 tonnes. Mercury is used in the production of alkaline batteries and fluorescent lamps, mercuric lamps in the chlor-alkali (electrolytic production of chloride and sodium hydroxide) and chemical (paint manufacturing, catalysts in chemical processes) industries. It is also used in control and measurement devices (thermometers, manometers, pressure valves), in dental preparations (amalgam) and in laboratories. Mercury concentrations in chlor-alkali plants have recently ranged, depending on the country, from < 10 to 430 μg/m3, and concentrations in the urine of the employees of those plants ranged from 0 to 750 μg/l. In industrial plants, inhalation is the only way of workers’ exposure to Hg vapors. Inhalation exposure to other Hg inorganic compounds does not practically entail any risk. In the cases of acute Hg intoxication, the lungs are the most critical organ. In occupational exposure the acute form of contamination with this metal is rather rare. Nevertheless, it has been found that high concentrations of Hg vapors induce various harmful effects on the nervous system, e.g., tremor, emotional liability, insomnia, memory disturbances, polyneuropathies, disturbances of cognitive and motor functions and vision disorders, whereas chronic exposure to mercury and its inorganic compounds exerts neurotoxic and nephrotoxic effects. On the basis of the DL50 value for rats (25.7 mg/kg) and in accordance with the European Union (EU) classification, mercury and its inorganic compounds can be categorized as toxic compounds. On the basis of the available evidence, the International Agency for Research on Cancer categorized metallic mercury and its inorganic compounds as group 3, not classifiable as to its carcinogenity to humans. Numerous reports have indicated mutagenic effects of mercuric chloride (II), but not of Hg vapors. Although data on the effects of metallic mercury and its inorganic compounds on fertility in persons exposed to metallic mercury are contradictory, their adverse effects have been evidenced in animal studies. Bearing in mind that mercury penetrates the placental barrier it has been recommended to reduce exposure to mercury and its compounds to a minimum among women of child-bearing age. Most data based on animal studies apply to inorganic mercury compounds, especially to mercuric chloride, whereas data obtained from epidemiological studies mostly apply to occupational exposure to Hg vapors. Excessive occupational exposure to metallic mercury (vapors) and its compounds leads to psychiatric, behavioral and neurological symptoms and also to kidney damage. Thus, the neurological system and kidneys are major targets in chronic exposure to mercury and its inorganic compounds. Therefore, when setting MAC values, researchers should consider concentrations beyond which subclinical changes are not observed. Behavioral disturbances are the earliest consequences of exposure to Hg vapors, therefore the proposed MAC value should be set for Hg vapors and the obtained standard value should protect workers against harmful effects of both vapors of mercury and its inorganic compounds. The results of epidemiological studies on early mercury-induced neurotoxic effects have been taken as the basis for setting MAC values for Hg vapors and inorganic compounds. Most of those results showed that the health condition of the persons under study were more correlated with the results of biologic monitoring (urine and blood Hg concentrations) than with those of air monitoring. That is why the proposed hygiene standards have been deduced from Hg concentrations in urine. Most authors of epidemiological studies adopt the value of 35 μg/g creatinine in urine as the threshold concentration; at higher concentrations adverse effects on the peripheral nervous system and on the kidneys have been observed. Meta analyses of epidemiological studies reveal potential toxic effects of mercury on human behavior already after exposure to urinal Hg concentration within the range of 20 ÷ 30 μg/g creatinine. In our opinion, on the basis of the arguments used to justify the adoption of EU standards and the results of meta analyses, the level of 30 μg Hg/g creatinine in urine should be set as the level protecting against the development of behavioral disturbances. This value is proposed to be adopted as a biological limit value (BLV). Extrapolation from biological monitoring values to airborne exposure to mercury show that Hg concentration in the air at the level of 0.02 mg/m3 would correspond with the recommended Hg concentration in urine (30 μg/g creatinine). We propose to adopt this level as the MAC value. The proposed standard values (MAC, 0.020 mg/m3 and BLV 30 μg/g creatinine) are in agreement with norms adopted by the European Union. The proposed hygienic standards should protect workers against adverse effects of both mercury vapors and inorganic compounds. Setting the STEL concentration of mercury and its compounds is not warranted.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 3 (65); 85-149
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trimetoksyfosfan
Trimethyl phosphate
Autorzy:
Piotrowski, J. K.
Orłowski, Cz.
Powiązania:
https://bibliotekanauki.pl/articles/137464.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
trimetoksyfosfan
fosforyn trimetylu
TMP
toksyczność
ustalenie wartości NDS
trimethyl phosphite
toxicity
establishing MAC (TWA)
Opis:
Trimetoksyfosfan (fosforyn trimetylu, TMP) jest bezbarwną cieczą o charakterystycznym ostrym zapachu, która w wodzie ulega hydrolizie do fosforynu dimetylu (dimetoksyfosfiny) i metanolu. Główne zastosowanie trimetoksyfosfanu jest związane z produkcją pestycydów. W dostępnym piśmiennictwie nie ma danych o toksycznym działaniu trimetoksyfosfanu na ludzi. Jedyna informacja dotyczy braku skutków szkodliwych u pracowników narażonych na trimetoksyfosfan o stężeniach 1,5 ÷ 21 mg/m3. Wartość medialnej dawki śmiertelnej (LD50) trimetoksyfosfanu po narażeniu per os u szczurów wynosi 2450 ÷ 2890 mg/kg masy ciała. Zbliżone wartości LD50 trimetoksyfosfanu otrzymano po narażeniu dermalnym oraz dootrzewnowym, co świadczy o dużej wydajności wchłaniania związku drogą dermalną. U szczurów narażanych inhalacyjnie na trimetoksyfosfan o stężeniu 3100 mg/m3 (6 h dziennie, 5 dni w tygodniu w ciągu 4 tygodni) stwierdzono dużą liczbę (ponad 70%) padnięć zwierząt. Po narażeniu na trimetoksyfosfan o stężeniu 1550 mg/m3 padło 10% zwierząt, a po narażeniu na związek o stężeniach mniejszych obserwowano objawy szkodliwego działania związku na oczy: podrażnienie, zaćmę i zmętnienie soczewek. Po narażeniu zwierząt na trimetoksyfosfan o stężeniu równym 260 mg/m3 obserwowano u zwierząt skutki szkodliwe (wartość LOAEL), tj. podrażnienie rogówki u obu płci oraz zaćmę u samic, natomiast związek o stężeniu 52 mg/m3 nie powodował u zwierząt żadnych skutków (wartość NOAEL). Nie ma danych w dostępnym piśmiennictwie na temat działania rakotwórczego trimetoksyfosfanu. Wykazano mutagenne działanie związku w testach u Drosophila melanogaster oraz w komórkach chłoniaka myszy. Negatywnywynik działania mutagennego uzyskano w teście Amesa u Salmonella typhimurium oraz w teście naprawy DNA u Escherichia coli i Salmonella typhimurium. Działanie teratogenne trimetoksyfosfanu obserwowano u szczurów po dawce 164 mg/kg/dzień podawanej między 6. a 15. dniem ciąży. Nie stwierdzono działania teratogennego związku po dawkach 15 i 49 mg/kg/dzień. Nie ma danych w dostępnym piśmiennictwie dotyczących toksykokinetyki i mechanizmu działania toksycznego trimetoksyfosfanu. W większości państw za wartość najwyższego dopuszczalnego stężenia (NDS) przyjęto stężenie 10 mg/m3, co według ACGIH powinno zabezpieczyć pracowników przed działaniem drażniącym związku. W Finlandii i Danii przyjęto wartość nieco mniejszą wynoszącą 2,6 mg/m3, natomiast w Niemczech, ze względu na działanie teratogenne i mutagenne trimetoksyfosfanu oraz z uwagi na brak danych o działaniu rakotwórczym, wartości MAK nie ustalono. Za wartość NOAEL dla działania drażniącego trimetoksyfosfanu na oczy przyjęto stężenie 52 mg/m3. Po zastosowaniu współczynników niepewności za wartość NDS trimetoksyfosfanu przyjęto stężenie 5 mg/m3, a za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) trimetoksyfosfanu – 10 mg/m3. Ponadto proponuje się substancję oznaczyć literami „Sk”, które oznaczają substancje wchłaniające się przez skórę.
Trimethyl phosphite (TMP) is a colorless liquid with a distinctive, pungent odor. It is mainly used as an intermediate in the manufacture of pesticides. Acute oral LD50 values for rats are between 2450 and 2890 mg/kg b.w. Superficial irritation of the cornea was observed in rats exposed at 50 and 100 ppm, and mild cataracts developed in female rats only. No effects were detected in animals exposed at 10 ppm (52 mg/m3). The substance was positive in a battery of Drosophila melanogaster mutagenicity assays and in a bacterial DNA damage/repair suspension assay using various strains of Escherichia coli and Salmonella typhimurium. The Expert Group for Chemical Agent established an 8-hour TWA value of 5 mg/m3, and a STEL value of 10 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 4 (50); 93-104
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies