Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kernel by monochromatic paths" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On monochromatic paths and bicolored subdigraphs in arc-colored tournaments
Autorzy:
Delgado-Escalante, Pietra
Galeana-Sánchez, Hortensia
Powiązania:
https://bibliotekanauki.pl/articles/743637.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
kernel by monochromatic paths
tournament
Opis:
Consider an arc-colored digraph. A set of vertices N is a kernel by monochromatic paths if all pairs of distinct vertices of N have no monochromatic directed path between them and if for every vertex v not in N there exists n ∈ N such that there is a monochromatic directed path from v to n. In this paper we prove different sufficient conditions which imply that an arc-colored tournament has a kernel by monochromatic paths. Our conditions concerns to some subdigraphs of T and its quasimonochromatic and bicolor coloration. We also prove that our conditions are not mutually implied and that they are not implied by those known previously. Besides some open problems are proposed.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 4; 791-820
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernels and cycles subdivisions in arc-colored tournaments
Autorzy:
Delgado-Escalante, Pietra
Galeana-Sánchez, Hortensia
Powiązania:
https://bibliotekanauki.pl/articles/743117.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
kernel by monochromatic paths
tournament
Opis:
Let D be a digraph. D is said to be an m-colored digraph if the arcs of D are colored with m colors. A path P in D is called monochromatic if all of its arcs are colored alike. Let D be an m-colored digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths of D if it satisfies the following conditions: a) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them; and b) for every vertex x ∈ V(D)-N there is a vertex n ∈ N such that there is an xn-monochromatic directed path in D. In this paper we prove that if T is an arc-colored tournament which does not contain certain subdivisions of cycles then it possesses a kernel by monochromatic paths. These results generalize a well known sufficient condition for the existence of a kernel by monochromatic paths obtained by Shen Minggang in 1988 and another one obtained by Hahn et al. in 2004. Some open problems are proposed.
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 1; 101-117
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies