Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "time prediction" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Application of long short term memory neural networks for GPS satellite clock bias prediction
Autorzy:
Gnyś, Piotr
Przestrzelski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1987078.pdf
Data publikacji:
2021-12-30
Wydawca:
Politechnika Gdańska
Tematy:
neural networks
LSTM
time series prediction
clock bias
GNSS
machine learning
Opis:
Satellite-based localization systems like GPS or Galileo are one of the most commonly used tools in outdoor navigation. While for most applications, like car navigation or hiking, the level of precision provided by commercial solutions is satisfactory it is not always the case for mobile robots. In the case of long-time autonomy and robots that operate in remote areas battery usage and access to synchronization data becomes a problem. In this paper, a solution providing a real-time onboard clock synchronization is presented. Results achieved are better than the current state-of-the-art solution in real-time clock bias prediction for most satellites.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2021, 25, 4; 381-395
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data mining workspace as an optimization prediction technique for solving transport problems
Решение задачи прогнозирования в транспортной отрасли с помощью методов data mining
Autorzy:
Kuptcova, A.
Průša, P.
Federko, G.
Molnár, V.
Powiązania:
https://bibliotekanauki.pl/articles/375552.pdf
Data publikacji:
2016
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
time series prediction
data mining
neural network
modelling
predykcja szeregów czasowych
eksploracja danych
sieć neuronowa
modelowanie
Opis:
This article addresses the study related to forecasting with an actual high-speed decision making under careful modelling of time series data. The study uses data-mining modelling for algorithmic optimization of transport goals. Our finding brings to the future adequate techniques for the fitting of a prediction model. This model is going to be used for analyses of the future transaction costs in the frontiers of the Czech Republic. Time series prediction methods for the performance of prediction models in the package of Statistics are Exponential, ARIMA and Neural Network approaches. The primary target for a predictive scenario in the data mining workspace is to provide modelling data faster and with more versatility than the other management techniques.
В данной статье рассматривается задача прогнозирования временных рядов, которая заключается в построении модели для предсказания будущих событий. В исследовании используются методы интеллектуального анализа данных. Модель прогнозирования позволяет адекватно оценивать исследуемый процесс. Целью исследования является изучение динамики расходов при реализации экспортной продукции. Прогнозирование осуществляется с помощью ARIMA-модели, на основе метода экспоненциального сглаживания и по технологии логической нейронной сети. Построение базового и быстрого сценария прогнозирования является важным и ответственным этапом в научной деятельности.
Źródło:
Transport Problems; 2016, 11, 3; 21-31
1896-0596
2300-861X
Pojawia się w:
Transport Problems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local dynamic integration of ensemble in prediction of time series
Autorzy:
Osowski, S.
Siwek, K.
Powiązania:
https://bibliotekanauki.pl/articles/201557.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
ensemble of predictors
dynamic integration
time series prediction
sieci neuronowe
zespół predyktorów
dynamiczna integracja
Opis:
The paper presents local dynamic approach to integration of an ensemble of predictors. The classical fusing of many predictor results takes into account all units and takes the weighted average of the results of all units forming the ensemble. This paper proposes different approach. The prediction of time series for the next day is done here by only one member of an ensemble, which was the best in the learning stage for the input vector, closest to the input data actually applied. Thanks to such arrangement we avoid the situation in which the worst unit reduces the accuracy of the whole ensemble. This way we obtain an increased level of statistical forecasting accuracy, since each task is performed by the best suited predictor. Moreover, such arrangement of integration allows for using units of very different quality without decreasing the quality of final prediction. The numerical experiments performed for forecasting the next input, the average PM10 pollution and forecasting the 24-element vector of hourly load of the power system have confirmed the superiority of the presented approach. All quality measures of forecast have been significantly improved.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 3; 517-525
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Collectively intelligent prediction in evolutionary multi-agent system
Autorzy:
Kijak, J.
Martyna, P.
Byrski, A.
Faber, Ł.
Piętak, K.
Kisiel-Dorohinicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/397728.pdf
Data publikacji:
2017
Wydawca:
Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
Tematy:
evolutionary neural networks
agent-based computing
time series prediction
collective intelligence
metaheuristic optimization
ewolucyjne sieci neuronowe
obliczenia agentowe
predykcja szeregów czasowych
inteligencja zbiorowa
optymalizacja metaheurystyczna
Opis:
In the paper a summary of our previously realized and published work connected with constructing collective intelligent evolutionary multi-agent systems for time series prediction, based on multi-layered perceptrons is shown. Besides recalling our past papers, we describe the whole concept, present an implementation in a contemporary, componentoriented software framework AgE 3.0 and we conduct a number of experiments, finding different optimal parametrization for the considered instances of the problems (popular Mackey-Glass chaotic time series). The paper may be useful for a practitioner willing to use our meatheuristic algorithm (EMAS) along with the idea of collective agent-based system in order to realize prediction tasks.
Źródło:
International Journal of Microelectronics and Computer Science; 2017, 8, 3; 85-96
2080-8755
2353-9607
Pojawia się w:
International Journal of Microelectronics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting models for chaotic fractional-order oscillators using neural networks
Autorzy:
Bingi, Kishore
Prusty, B Rajanarayan
Powiązania:
https://bibliotekanauki.pl/articles/2055150.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
chaotic oscillators
data driven forecasting
fractional order system
model free analysis
neural network
time series prediction
oscylator chaotyczny
układ rzędu ułamkowego
sieć neuronowa
prognozowanie szeregów czasowych
Opis:
This paper proposes novel forecasting models for fractional-order chaotic oscillators, such as Duffing’s, Van der Pol’s, Tamaševičius’s and Chua’s, using feedforward neural networks. The models predict a change in the state values which bears a weighted relationship with the oscillator states. Such an arrangement is a suitable candidate model for out-of-sample forecasting of system states. The proposed neural network-assisted weighted model is applied to the above oscillators. The improved out-of-sample forecasting results of the proposed modeling strategy compared with the literature are comprehensively analyzed. The proposed models corresponding to the optimal weights result in the least mean square error (MSE) for all the system states. Further, the MSE for the proposed model is less in most of the oscillators compared with the one reported in the literature. The proposed prediction model’s out-of-sample forecasting plots show the best tracking ability to approximate future state values.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 3; 387--398
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies