Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "latent heat" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Thermal energy storage in buildings: Opportunities and challenges
Autorzy:
Deka, Priyam
Szlęk, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2204063.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermal energy storage
renewable energy
phage change material
latent heat thermal energy storage
sensible heat thermal energy storage
Opis:
The energy sector is a majorarea that is responsible for the country development. Almost 40% of the total energy requirement of an EU country is consumed by the building sector and 60% of which is only used for heating and cooling requirements. This is a prime concern as fossil fuel stocks are depleting and global warming is rising. This is where thermal energy storage can play a major role and reduce the dependence on the use of fossil fuels for energy requirements (heating and cooling) of the building sector. Thermal energy storage refers to the technology which is related to the transfer and storage of heat energy predominantly from solar radiation, alternatively to the transfer and storage of cold from the environment to maintain a comfortable temperature for the inhabitants in the buildings by providing cold in the summer and heat in the winter. This work is an extensive study on the use of thermal energy storage in buildings. It discusses different methods of implementing thermal energy storage into buildings, specifically the use of phase change materials, and also highlights the challenges and opportunities related to implementing this technology. Moreover, this work explains the principles of different types and methods involved in thermal energy storage.
Źródło:
Archives of Thermodynamics; 2022, 43, 4; 21--61
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inorganic salt hydrates as Phase Change Materials (PCM) for thermal energy storage in solar installations
Nieorganiczne hydraty soli jako materiały zmiennofazowe (PCM) do magazynowania energii cieplnej w instalacjach słonecznych
Autorzy:
Styś-Maniara, Marta
Nartowska, Edyta
Metryka-Telka, Monika
Porowski, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/2174679.pdf
Data publikacji:
2022
Wydawca:
Politechnika Świętokrzyska w Kielcach. Wydawnictwo PŚw
Tematy:
salt hydrates
phase change materials
thermal energy storage
latent heat storage
hydraty soli
materiały zmiennofazowe
magazynowanie energii cieplnej
magazynowanie ciepła utajonego
Opis:
The authors present a general idea of using inorganic salt hydrates in solar installations. A key role in this selection is played by thermophysical parameters, so the authors review their test methods and in turn characterize them for the most promising salt hydrates. Next, the authors describe the advantages and disadvantages of inorganic salt hydrates and indicate possibilities for their improvement. The use of salt hydrate converters in PV installations significantly improves the efficiency of photovoltaic modules. We show that at least 18 salt hydrates are promising for solar applications with the best ones being Sodium Hydrogen Phosphate Dodecahydrate, Sodium Carbonate Decahydrate and Calcium Chloride Hexahydrate. The selection of a test method for determining the thermophysical parameters of salt hydrates should be individual depending on the research objective. Comparing the methods presented, we believe that it is the DSC and DTA methods that provide the most accurate and repeatable results.
Autorzy przedstawiają ogólną koncepcję wykorzystania nieorganicznych hydratów solnych w instalacjach solarnych. Kluczową rolę w tym doborze odgrywają parametry termofizyczne, dlatego autorzy dokonują przeglądu metod ich badania i kolejno charakteryzują je dla najbardziej obiecujących hydratów solnych i ich mieszanin. Następnie autorzy opisują zalety i wady nieorganicznych hydratów solnych oraz wskazują możliwości ich udoskonalenia. Zastosowanie konwerterów hydratów solnych w instalacjach PV znacząco poprawia sprawność modułów fotowoltaicznych. Wykazano, że co najmniej 18 hydratów soli i ich mieszanin jest obiecujących dla zastosowań solarnych ze względu na korzystne parametry termofizyczne, przy czym najlepsze z nich to dodekahydrat wodorofosforan sodu, dekahydrat węglanu sodu i heksadydrat chlorku wapnia. Z przeglądu literatury wynika, że wybór metody badawczej do określenia parametrów termofizycznych hydratów soli powinien być indywidualny w zależności od celu badań. Porównując przedstawione metody, stwierdzono, że to właśnie metody DSC i DTA dają najbardziej dokładne i powtarzalne wyniki.
Źródło:
Structure and Environment; 2022, 14, 4; 161--172
2081-1500
Pojawia się w:
Structure and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Magazynowanie ciepła produkowanego przez cieczowe kolektory słoneczne w zasobniku PCM
Thermal energy storage of heat produced in liquid-based solar collectors
Autorzy:
Pater, S.
Ciesielczyk, W.
Bętkowska, I.
Powiązania:
https://bibliotekanauki.pl/articles/2073347.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
magazyn ciepła
kolektor słoneczny cieczowy
substancja zmiennofazowa
ciepło utajone
niskotemperaturowe ciepło
thermal energy storage
liquid-based solar collector
phase changing material
latent heat
low temperature heat
Opis:
Zaproponowano instalację do magazynowania w zasobniku PCM ciepła produkowanego przez system z płaskimi cieczowymi kolektorami słonecznymi dla Browaru Warka. Zgromadzona energia ma być wykorzystywana na potrzeby obecnie stosowanej metody mycia na miejscu CIP. Kolektory słoneczne zostaną zamontowane na dachu hali produkcyjnej i rozlewni, tj. na powierzchni około 26 000 m2. W skali roku instalacja ma produkować około 7,3 min MJ ciepła, czyli około 14% zapotrzebowania na ciepło do metody CIP. Jako substancję zmiennofazową wybrano parafinę typu RT54HC.
The paper presents an installation for storing in the PCM tank the heat produced by the system with flat-plate liquid solar collectors at the Warka Brewery. The collected energy is to be used for the currently applied CIP method. Solar collectors will be installed on the roof of production hall and bottling plant, i.e. on the area of approximately 26 000 m2. On an annual basis, the plant is expected to produce about 7.3 million MJ of heat, or approximately 14% of heat demand for the CIP method. RT54HC paraffin was chosen as phase-changing substance.
Źródło:
Inżynieria i Aparatura Chemiczna; 2018, 3; 73--74
0368-0827
Pojawia się w:
Inżynieria i Aparatura Chemiczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study
Autorzy:
Benlekkam, Mohamed Lamine
Nehari, Driss
Powiązania:
https://bibliotekanauki.pl/articles/2065756.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
phase change material (PCM)
latent heat storage
melting
solidification
thermal energy storage
hybrid nanoparticle
LHTESS
materiał zmiennofazowy
magazynowanie ciepła utajonego
topienie
krzepnięcie
magazynowanie energii cieplnej
hybrydowa nanocząstka
Opis:
The phase change materials (PCM) are widely used in several applications, especiallyi n the latent heat thermal energy storage system (LHTESS). Due to the very low thermal conductivity of PCMs. A small mass fraction of hybrid nanoparticles TiO 2–CuO (50%–50%) is dispersed in PCM with five mass concentrations of 0%, 0.25%, 0.5%, 0.75% and 1 mass % to improve its thermal conductivity. This article is focused on thermal performance of the hybrid nano-PCM (HNPCM) used for the LHTESS. A numerical model based on the enthalpy-porosity technique is developed to solve the Navier-Stocks and energy equations. The computations were conducted for the melting and solidification processes of the HNPCM in a shell and tube latent heat storage (LHS). The developed numerical model was validated successfully with experimental data from the literature. The results showed that the dispersed hybrid nanoparticles improved the effective thermal conductivity and density of the HNPCM. Accordingly, when the mass fraction of a HNPCM increases by 0.25%, 0.5%, 0.75% and 1 mass %, the average charging time improves by 12.04 %, 19.9 %, 23.55%, and 27.33 %, respectively. Besides, the stored energy is reduced by 0.83%, 1.67%, 2.83% and 3.88%, respectively. Moreover, the discharging time was shortened by 18.47%, 26.91%, 27.71%, and 30.52%, respectively.
Źródło:
Archive of Mechanical Engineering; 2022, LXIX, 1; 77--98
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
  • odwiedzone
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies