Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sentiment" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
An environment for collective perception based on fuzzy and semantic approaches
Autorzy:
D’Aniello, G.
Gaeta, M.
Loia, F.
Reformat, M.
Toti, D.
Powiązania:
https://bibliotekanauki.pl/articles/91892.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
smart cities
fuzzy logic
text mining
sentiment analysis
Opis:
This work proposes a software environment implementing a methodology for acquiring and exploiting the collective perception (CP) of Points of Interests (POIs) in a Smart City, which is meant to support decision makers in urban planning and management. This environment relies upon semantic knowledge discovery techniques and fuzzy computational approaches, including natural language processing, sentiment analysis, POI signatures and Fuzzy Cognitive Maps, turning them into a cohesive architectural blend in order to effectively gather the realistic perception of a user community towards given areas and attractions of a Smart City. The environment has been put to the test via a thorough experimentation against a massive user base of an online community with respect to a large metropolitan city (the City of Naples). Such an experimentation yielded consistent results, useful for providing decision makers with a clear awareness of the positive as well as critical aspects of urban areas, and thus helping them shape the measures to be taken for an improved city management and development.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 3; 191-210
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Brand position in the eyes of customers: assessment of selected airlines by the passengers online reviews
Autorzy:
Hoffmann, Natalia
Powiązania:
https://bibliotekanauki.pl/articles/16729698.pdf
Data publikacji:
2022
Wydawca:
Instytut Badań Gospodarczych
Tematy:
data mining
text mining
branch
brand
opinion
R
client
airline
sentiment analysis
Opis:
Motivation: The motivation to write an article on airlines was the desire to rank them based on customer reviews and see how these reviews reflect the actual brand image. The opinions that companies collect about themselves have a very strong power when it comes to building its reputation. Aim: The aim of the study was to use digital transformation and transform raw data into specific information that expressed customer emotions to create a profile of selected airlines. A secondary goal of the article was also to check how the analyzed airlines perform in similar areas. Materials and methods: The data used for the analysis was collected from the eSky.com website and covers the 2019-2020 period. The airlines concerned by the customer reviews were LOT, Ryanair, Wizzair, Czarter, EasyJet, Lufthansa and Laudamotion. Their selection was dictated by the number of opinions necessary to conduct the analysis. The research based on the use of data mining techniques, but it should be noted that most of it uses text mining tools. Topic modelling was used to prepare the data properly and assign each word to groups with similar themes. In order to obtain information whether a given opinion has a positive, negative or neutral tenor, sentiment analysis was used. The final part of the analysis was based on the net sentiment score indicator. The entire analysis was carried out in the R-Studio. Results: The most common subjects of opinions written by customers were "delay", "service", "boarding" and "airline". It was confirmed that the opinions of each airline concern different topics, although some common topics were noticeable. Two topics were repeated among the 7 analyzed airlines: "service" and "delay". Based on the sentiment analysis, for the Ryanair airline the percentage of negative opinions was highest and equal to 35%, almost 40%, of neutral opinions fell on the WizzAir airline and the largest percentage of positive feedback, as much as 46%, was attributed to EasyJet. EasyJet line looks the best in the eyes of customers. The line that evoked uniformly positive, negative and neutral emotions in the opinions was Ryanair.
Źródło:
Catallaxy; 2022, 7, 1; 7-21
2544-090X
Pojawia się w:
Catallaxy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study of the Influence of Online Information on the Changes in the Warsaw Stock Exchange Indexes
Badanie wpływu informacji sieciowych na zmiany indeksów na Giełdzie Papierów Wartościowych w Warszawie
Autorzy:
Młodzianowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/660026.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
wiadomości
Giełda Papierow Wartościowych
text mining
analiza sentymentu
news
Warsaw Stock Exchange
sentiment analysis
Opis:
W artykule zaprezentowano wyniki badania nad wpływem informacji sieciowych pochodzących z serwisów internetowych o tematyce finansowej na zmiany indeksów zachodzące na Warszawskiej Giełdzie Papierów Wartościowych. Pierwsza część pracy ma charakter teoretyczny. Przybliżono w niej zagadnienie text miningu oraz analizy sentymentu. Przedstawiono ich zastosowanie w procesie analizy tekstu. W następnej części pracy omówiono charakterystykę prowadzonego badania. Dokonano wyboru polskich serwisów informacyjnych o tematyce finansowej, które mogą wpływać na reakcje inwestorów z Warszawskiej Giełdy Papierów Wartościowych. Przeprowadzono selekcję słów występujących w analizowanych serwisach oraz dokonano ich podziału na klasy. Następnie zaanalizowano zależności między zmianą indeksów GPW a częstością występowania poszczególnych słów w ramach klas. W ostatniej części pracy zaprezentowano wyniki badań, przeprowadzono dyskusję nad możliwościami ich wykorzystania oraz wskazano dalsze kierunki badań.
The article presents the results of a study on the influence of online information originating from financial websites on changes in the Warsaw Stock Exchange indexes. The first part is theoretical. It describes the issue of text mining and sentiment analysis and their use in the text analysis process. The next part of the article describes the characteristics of the study. A selection was made of Polish financial websites that may trigger reactions from investors on the Warsaw Stock Exchange. Words occurring on the analysed websites were selected and put into classes. Then the relation between changes in WSE indexes and the frequency of appearance of individual words within the classes was analysed. The last part of the article presents the study results, discusses the possibilities of using them and indicates further areas for research.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2018, 3, 335; 123-138
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New algorithm for determining the number of features for the effective sentiment-classification of text documents
Nowy algorytm ustalania liczby zmiennych potrzebnych do klasyfikacji dokumentów tekstowych ze względu na ich wydźwięk emocjonalny
Autorzy:
Idczak, Adam
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/18105028.pdf
Data publikacji:
2023-05-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
sentiment analysis
document sentiment classification
text mining
logistic regression
naive Bayes classifier
feature selection
correlation
analiza sentymentu
klasyfikacja dokumentów ze względu na wydźwięk emocjonalny
eksploracja tekstu
regresja logistyczna
naiwny klasyfikator Bayesa
dobór cech
korelacja
Opis:
Sentiment analysis of text documents is a very important part of contemporary text mining. The purpose of this article is to present a new technique of text sentiment analysis which can be used with any type of a document-sentiment-classification method. The proposed technique involves feature selection independently of a classifier, which reduces the size of the feature space. Its advantages include intuitiveness and computational noncomplexity. The most important element of the proposed technique is a novel algorithm for the determination of the number of features to be selected sufficient for the effective classification. The algorithm is based on the analysis of the correlation between single features and document labels. A statistical approach, featuring a naive Bayes classifier and logistic regression, was employed to verify the usefulness of the proposed technique. They were applied to three document sets composed of 1,169 opinions of bank clients, obtained in 2020 from a Poland-based bank. The documents were written in Polish. The research demonstrated that reducing the number of terms over 10-fold by means of the proposed algorithm in most cases improves the effectiveness of classification.
Analiza sentymentu, czyli wydźwięku emocjonalnego, dokumentów tekstowych stanowi bardzo ważną część współczesnej eksploracji tekstu (ang. text mining). Celem artykułu jest przedstawienie nowej techniki analizy sentymentu tekstu, która może znaleźć zastosowanie w dowolnej metodzie klasyfikacji dokumentów ze względu na ich wydźwięk emocjonalny. Proponowana technika polega na niezależnym od klasyfikatora doborze cech, co skutkuje zmniejszeniem rozmiaru ich przestrzeni. Zaletami tej propozycji są intuicyjność i prostota obliczeniowa. Zasadniczym elementem omawianej techniki jest nowatorski algorytm ustalania liczby terminów wystarczających do efektywnej klasyfikacji, który opiera się na analizie korelacji pomiędzy pojedynczymi cechami dokumentów a ich wydźwiękiem. W celu weryfikacji przydatności proponowanej techniki zastosowano podejście statystyczne. Wykorzystano dwie metody: naiwny klasyfikator Bayesa i regresję logistyczną. Za ich pomocą zbadano trzy zbiory dokumentów składające się z 1169 opinii klientów jednego z banków działających na terenie Polski uzyskanych w 2020 r. Dokumenty zostały napisane w języku polskim. Badanie pokazało, że kilkunastokrotne zmniejszenie liczby terminów przy zastosowaniu proponowanej techniki na ogół poprawia jakość klasyfikacji.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2023, 68, 5; 40-57
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of methods and means of text mining
Autorzy:
Rybchak, Z.
Basystiuk, O.
Powiązania:
https://bibliotekanauki.pl/articles/411072.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
text mining
text analytics
data analysis
high-quality information
text categorization
text clustering
document summarization
sentiment analysis
sieć językowa
analiza tekstu
analiza danych
wysoka jakość informacji
klasyfikacja tekstowa
kategoryzacja tekstowa
grupowanie tekstu
streszczenie dokumentów tekstowych
technika sentiment analysis
Opis:
In Big Data era when data volume doubled every year analyzing of all this data become really complicated task, so in this case text mining systems, techniques and tools become main instrument of analyzing tones and tones of information, selecting that information that suit the best for your needs and just help save your time for more interesting thing. The main aims of this article are explain basic principles of this field and overview some interesting technologies that nowadays are widely used in text mining.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2017, 6, 2; 73-78
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sentiment Classification of Bank Clients’ Reviews Written in the Polish Language
Analiza sentymentu na podstawie polskojęzycznych recenzji klientów banku
Autorzy:
Idczak, Adam Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2033889.pdf
Data publikacji:
2021-06-30
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza sentymentu
klasyfikacja dokumentów
textmining
regresja logistyczna
naiwny klasyfikator Bayesa
sentiment analysis
opinion mining
text classification
text mining
logistic regression
naive Bayes classifier
Opis:
It is estimated that approximately 80% of all data gathered by companies are text documents. This article is devoted to one of the most common problems in text mining, i.e. text classification in sentiment analysis, which focuses on determining the sentiment of a document. A lack of defined structure of the text makes this problem more challenging. This has led to the development of various techniques used in determining the sentiment of a document. In this paper, a comparative analysis of two methods in sentiment classification, a naive Bayes classifier and logistic regression, was conducted. Analysed texts are written in the Polish language and come from banks. The classification was conducted by means of a bag‑of‑n‑grams approach, where a text document is presented as a set of terms and each term consists of n words. The results show that logistic regression performed better.
Szacuje się, że około 80% wszystkich danych gromadzonych i przechowywanych w systemach informacyjnych przedsiębiorstw ma postać dokumentów tekstowych. Artykuł jest poświęcony jednemu z podstawowych problemów textminingu, tj. klasyfikacji tekstów w analizie sentymentu, która rozumiana jest jako badanie wydźwięku tekstu. Brak określonej struktury dokumentów tekstowych jest przeszkodą w realizacji tego zadania. Taki stan rzeczy wymusił rozwój wielu różnorodnych technik ustalania sentymentu dokumentów. W artykule przeprowadzono analizę porównawczą dwóch metod badania sentymentu: naiwnego klasyfikatora Bayesa oraz regresji logistycznej. Badane teksty są napisane w języku polskim, pochodzą z banków i mają charakter marketingowy. Klasyfikację przeprowadzono, stosując podejście bag‑of‑n‑grams. W ramach tego podejścia dokument tekstowy wyrażony jest za pomocą podciągów składających się z określonej liczby n wyrazów. Uzyskane wyniki pokazały, że lepiej spisała się regresja logistyczna.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2021, 2, 353; 43-56
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza sentymentu – metoda analizy danych jakościowych. Przykład zastosowania oraz ewaluacja słownika RID i metody klasyfikacji Bayesa w analizie danych jakościowych
Sentiment analysis. An example of application and evaluation of RID dictionary and Bayesian classification methods in qualitative data analysis approach
Autorzy:
Tomanek, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/622902.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza danych jakościowych
analiza sentymentu
analiza treści
text mining
kodowanie tekstów
przetwarzanie języka naturalnego słownik RID
naiwny klasyfikator Bayesa
CAQDAS
qualitative data analysis
sentiment analysis
content analysis
coding techniques
natural language processing
RID dictionary
naive Bayes
Opis:
Celem artykułu jest prezentacja podstawowych metod klasyfikacji jakościowych danych tekstowych. Metody te korzystają z osiągnięć wypracowanych w takich obszarach, jak przetwarzanie języka naturalnego i analiza danych nieustrukturalizowanych. Przedstawiam i porównuję dwie techniki analityczne stosowane wobec danych tekstowych. Pierwsza to analiza z zastosowaniem słownika tematycznego. Druga technika oparta jest na idei klasyfikacji Bayesa i opiera się na rozwiązaniu zwanym naiwnym klasyfikatorem Bayesa. Porównuję efektywność dwóch wspomnianych technik analitycznych w ramach analizy sentymentu. Akcentuję rozwiązania mające na celu zbudowanie trafnego, w kontekście klasyfikacji tekstów, słownika. Porównuję skuteczność tak zwanych analiz nadzorowanych do skuteczności analiz zautomatyzowanych. Wyniki, które prezentuję, wzmacniają wniosek, którego treść brzmi: słownik, który w przeszłości uzyskał dobrą ocenę jako narzędzie klasyfikacyjne, gdy stosowany jest wobec nowego materiału empirycznego, powinien przejść fazę ewaluacji. Jest to, w proponowanym przeze mnie podejściu, podstawowy proces adaptacji słownika analitycznego, traktowanego jako narzędzie klasyfikacji tekstów.
The purpose of this article is to present the basic methods for classifying text data. These methods make use of achievements earned in areas such as: natural language processing, the analysis of unstructured data. I introduce and compare two analytical techniques applied to text data. The first analysis makes use of thematic vocabulary tool (sentiment analysis). The second technique uses the idea of Bayesian classification and applies, so-called, naive Bayes algorithm. My comparison goes towards grading the efficiency of use of these two analytical techniques. I emphasize solutions that are to be used to build dictionary accurate for the task of text classification. Then, I compare supervised classification to automated unsupervised analysis’ effectiveness. These results reinforce the conclusion that a dictionary which has received good evaluation as a tool for classification should be subjected to review and modification procedures if is to be applied to new empirical material. Adaptation procedures used for analytical dictionary become, in my proposed approach, the basic step in the methodology of textual data analysis.
Źródło:
Przegląd Socjologii Jakościowej; 2014, 10, 2; 118-136
1733-8069
Pojawia się w:
Przegląd Socjologii Jakościowej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies