Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "air circulation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Rola cyrkulacji atmosfery w kształtowaniu temperatury powietrza w styczniu na Spitsbergenie
Role of atmospheric circulation on the January temperature variability in Spitsbergen
Autorzy:
Niedźwiedź, T.
Powiązania:
https://bibliotekanauki.pl/articles/260696.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
cyrkulacja atmosfery
Spitsbergen
temperatury powietrza
atmospheric circulation
air temperature
Opis:
The study presents variability of simple circulation indices above Spitsbergen for the period 1899-2004 in January, based on original calendar of synoptic divided from the synoptic maps. After calculation of synoptic types frequencies the further results have been obtained using the simple circulation indices: W - westerly, zonal index, S - southerly - meridional index, C - cyclonicity index, as proposed by R. Murray and R. Lewis (1966) with some modifications, as well as Spitsbergen Oscillation (OS) defined as the standarized pressure difference between Bjornoya and Longyearbyen. The negative value of W index is typical for Spitsbergen, according to great frequency of eastern airflow. Variability of January temperature in Svalbard (t01SV) were investigated on the basis of averages from four stations: Isfjord Radio and Svalbard Lufthavn, as well as from Polish Polar Station in Hornsund Fiord on SW part of Spitsbergen, and from Bjornoya (Bear Island) - about 300 km SSE from Hornsund. After reconstructions of some lack data on the basis of linear regression, temperature data were obtained for the period of 1912-2004. For the temperature the main feature is period of cooling in the years 1912-1918 and then the great warming during the decade of 1930th (1933-1937). During the years 1937-1971 was observed the significant decreasing trend in January temperature to the cool period of years 1962-1971. The last period 1971-2004 has no any trend in temperature. But three large fluctuations took place with warm Januarys of 1972-1974, 1990-1992 and 1999-2001 and cool ones of 1975-1982, 1993-1998 and 2002-2004. Temperature of January changes in Spitsbergen depend on a great extend of circulation factors, mainly from the southern (S) and zonal circulation indices (W) or Spitsbergen Oscillation index (SO). Using the models of multiple regression was possible the recontruction of January temperature since 1899 on the basis of circulation indices. They explained about 63% of variance in temperature.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 59-68
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Amplituda dobowa temperatury powietrza na Antarktydzie
Diurnal air temperature range on the Antarctic
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260832.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
Antarktyda
cyrkulacja atmosferyczna
air temperature
Antarctic
atmospheric circulation
Opis:
Diurnal air temperature ranges (DTR) have been counted based on the monthly mean values of the daily maximal and minimal air temperature from 23 Antarctic stations. DTR shows a considerable spatial differentiation on the Antarctic. The lowest DTR values (4-6°C) occur along the western coast of the Antarctic Peninsula and on the subantarctic islands. At the remaining coast of Antarctica the mean DTR vary from 6-7°C to 10°C at the stations situated on higher geographical latitude. In the Antarctic inlands the largest DTR values occur at the highest parts of glacier plateau (8-9°C), while on the South Pole they are distinctly smaller (6°C). In the annual course of DTR the following types have been distinguished: oceanic type at the western coast of the Antarctic Peninsula with small DTR in summer (2-4°C) and twice higher in winter; oceanic-continental type at the coast of Eastern Antarctic with large DTR during the whole year; continental-oceanic type with high DTR in summer and still higher (up to 13°C) in winter occurring at Western Antarctic and in the Weddell Sea basin; continental type characteristic for the interior of the continent with the highest DTR in summer (11-12°C) and smaller in winter; polar type with small DTR in summer (to 3°C) and considerable higher in winter (7-8°C). A decrease of DTR occurred on the Antarctic in regions characterized by increasing temperature in the second half of the 20th century, especially on the western coast of the Antarctic Peninsula, on the coast of Ross Sea and on the Queen Maud Land. The decrease in the DTR values was connected with the quicker increase of daily minimal air temperatures. On the other hand, in the regions where cooling was noted the DTR values increase (inlands of Eastern Antarctic and South Pole, and the Weddell Sea basin), mainly due to the fall in daily minimal air temperatures.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 7-18
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Współczesna zmienność cyrkulacji atmosfery, temperatury powietrza i opadów atmosferycznych na Spitsbergenie
Contemporary variability of atmospheric circulation, temperature and precipitation in Spitsbergen
Autorzy:
Niedźwiedź, T.
Powiązania:
https://bibliotekanauki.pl/articles/260947.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
cyrkulacja atmosfery
temperatury powietrza
opady atmosferyczne
Spitsbergen
atmospheric circulation
air temperature
precipitation
Opis:
The study presents variability of simple circulation indices above Spitsbergen for the period 1951-2002, based on original calendar of synoptic divided from the synoptic maps. After calculation of synoptic types frequencies the further results have been obtained using the simple circulation indices: W - westerly, zonal index, S - southerly - meridional index, C - cyclonicity index, as proposed by R. Murray and R. Lewis (1966) with some modifications. The negative value of W index is typical for Spitsbergen, according to great frequency of eastern airflow. Some complicated relations between above indices, NAO, temperature and precipitation were noticed in Spitsbergen. Variability of temperature and precipitation based on the data from Isfjord Radio and Svalbard Lufthavn stations, as well as from Polish Polar Station in Hornsund Fiord on SW part of Spitsbergen. They were compared with Bjornoya (Bear Island) - about 300 km SSE from Hornsund. For the temperature the main feature is period of cooling in the years 1961-1971 and around 1988, after the great warming during the decade of 1930th. During that coolest years also large annual temperature range was typical. The coldest was year 1968, and the warmest one -1984 (from -2 to -3°C). Next warm years were observed in 1990 and 1999, but in Jan Mayen the warmest was year 2002. The coolest winter (December-February) with average temperature below -20°C in Longyearbyen was in 1962/1963 (-21.5°C) and 1988/1989 (-20.1°C), and the warmest one on 1984/1985 (-8.3°C). Significant warming was noticed only in the warm half-year (V-X) about 1.2K since 1972 up to 2002. The warmest period V-X was in 1990, and coolest - in 1968. In summer (June-August) the temperature varied between 2°C in 1982 and 4.5°C (Hornsund) or 6.1°C (Longyearbyen) in 2002 (the warmest summer). Temperature changes in Spitsbergen depend on a great extend of circulation factors, mainly from the southern (S) and zonal circulation indices (W). The lowest temperatures were observed round the 1965. During the last decade of 1980 the period of little warming is observed again. For precipitation relative large increase of summer and September precipitation were noticed in the last years of the 20th century, mainly in 1994-1997. May be the part of its fallen in the form of snow in the upper parts of archipelago and supplied glaciers. The highest precipitation is typical for August and September. The largest diurnal precipitation totals - 58.3 mm was observed on August 1, 1994. The second high value 52.6 mm was noticed on September 6, 1996. During the observed period since 1978, only 5 time the daily precipitation in Hornsund exceeded 40 mm and 14 time were higher than 30 mm. In Hornsund annual total of precipitation twice exceeded 600 mm, in 1994 and 1996. This increase of precipitation was connected with greater frequency in the intensity of westerly and southerly atmospheric circulation expressed by the zonal and meridional circulation indices and the more intense cyclonic activity in autumn and winter seasons
Źródło:
Problemy Klimatologii Polarnej; 2003, 13; 79-92
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Związek akumulacji śniegu na lodowcach północno-zachodniego Spitsbergenu z cyrkulacją atmosferyczną, opadami i temperaturą powietrza w okresach zimowych
Relation between the snow accumulation on glaciers of North-West Spitsbergen and the atmospheric circulation, precipitation and air temperature in the winter seasons
Autorzy:
Grabiec, M.
Powiązania:
https://bibliotekanauki.pl/articles/260836.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Spitsbergen
akumulacja śniegu
cyrkulacja atmosferyczna
opady
temperatury powietrza
snow accumulation
atmospheric circulation
precipitation
air temperature
Opis:
This work attempts to determine connections between glaciers' winter mass balance and meteorological factors of winter seasons. Detailed analysis was carried out between the snow accumulation of Austre Broggerbreen and the meteorological data from Ny-Alesund station (Kongsfjord region) from 1975 to 1998. Relation has been found between the snow accumulation and warm and humid air masses frequency in winter seasons (X - V). Those masses are mainly from southerly and southwesterly directions for Svalbard. The winter mass balance shows very clear connection with air temperature and precipitation factors of winter seasons (sum of winter precipitation, number of days with precipitation intensity >= 5 mm per day, winter mean air temperature, and number of days with maximum daily air temperature >= 0°C). A particularly close connection is observed between winter mass balance and number of days with precipitation intensity >= 5 mm per day at the positive daily maximum air temperature (LPTmax) (r = 0.81) - Fig. 8. The winter mass balance multiply regression (Wb) was worked with the use of the elementary meteorological factors: the average winter temperature (T) and the sum of precipitation in the same period (P). On the basis of the multiply regression of winter balance it is possible to predict snow accumulation changes. Over the next 50 years the winter snow accumulation of Austre Broggerbreen could increase about 15% if the scenario of climatic changes by Hanssen-Bauer (2002b) is used. If, in addition, one assumes the stability of ablation, the mass balance of glaciers will rise by 24%, but the mass balance will still be negative.
Źródło:
Problemy Klimatologii Polarnej; 2003, 13; 161-171
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies