Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tabu Search Algorithm" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Problem-Independent Approach to Multiprocessor Dependent Task Scheduling
Autorzy:
Król, D.
Zydek, D.
Koszałka, L.
Powiązania:
https://bibliotekanauki.pl/articles/226364.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
tasks scheduling
DAG
genetic algorithm
tabu search
makespan
Opis:
This paper concerns Directed Acyclic Graph task scheduling on parallel executors. The problem is solved using two new implementations of Tabu Search and genetic algorithm presented in the paper. A new approach to solution coding is also introduced and implemented in both metaheuristics algorithms. Results given by the algorithms are compared to those generated by greedy LPT and SS-FF algorithms; and HAR algorithm. The analysis of the obtained results of multistage simulation experiments confirms the conclusion that the proposed and implemented algorithms are characterized by very good performance and characteristics.
Źródło:
International Journal of Electronics and Telecommunications; 2012, 58, 4; 369-379
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion
Autorzy:
Wang, Wen
Chen, Xin
Musial, Jędrzej
Blazewicz, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/330022.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
late work minimization
unrelated machines
tabu search
genetic algorithm
minimalizacja opóźnienia
przeszukiwanie tabu
algorytm genetyczny
Opis:
A scheduling problem in considered on unrelated machines with the goal of total late work minimization, in which the late work of a job means the late units executed after its due date. Due to the NP-hardness of the problem, we propose two meta-heuristic algorithms to solve it, namely, a tabu search (TS) and a genetic algorithm (GA), both of which are equipped with the techniques of initialization, iteration, as well as termination. The performances of the designed algorithms are verified through computational experiments, where we show that the GA can produce better solutions but with a higher time consumption. Moreover, we also analyze the influence of problem parameters on the performances of these metaheuristics.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 573-584
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heuristic algorithms for joint optimization of unicast and anycast traffic in elastic optical network-based large-scale computing systems
Autorzy:
Markowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/330713.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
elastic optical network
joint optimization
distributed data center
metaheuristic algorithm
tabu search
elastyczna sieć optyczna
optymalizacja wspólna
baza danych rozproszona
algorytm heurystyczny
metoda tabu search
Opis:
In recent years elastic optical networks have been perceived as a prospective choice for future optical networks due to better adjustment and utilization of optical resources than is the case with traditional wavelength division multiplexing networks. In the paper we investigate the elastic architecture as the communication network for distributed data centers. We address the problems of optimization of routing and spectrum assignment for large-scale computing systems based on an elastic optical architecture; particularly, we concentrate on anycast user to data center traffic optimization. We assume that computational resources of data centers are limited. For this offline problems we formulate the integer linear programming model and propose a few heuristics, including a meta-heuristic algorithm based on a tabu search method. We report computational results, presenting the quality of approximate solutions and efficiency of the proposed heuristics, and we also analyze and compare some data center allocation scenarios.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 3; 605-622
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatic parametric fault detection in complex analog systems based on a method of minimum node selection
Autorzy:
Bilski, A.
Wojciechowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/330761.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
complex analog system
support vector machine (SVM)
tabu search
genetic algorithm
parametric fault detection
system analogowy
maszyna wektorów wspierających
metoda tabu search
algorytm genetyczny
detekcja uszkodzeń
Opis:
The aim of this paper is to introduce a strategy to find a minimal set of test nodes for diagnostics of complex analog systems with single parametric faults using the support vector machine (SVM) classifier as a fault locator. The results of diagnostics of a video amplifier and a low-pass filter using tabu search along with genetic algorithms (GAs) as node selectors in conjunction with the SVM fault classifier are presented. General principles of the diagnostic procedure are first introduced, and then the proposed approach is discussed in detail. Diagnostic results confirm the usefulness of the method and its computational requirements. Conclusions on its wider applicability are provided as well.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 3; 655-668
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on optimization of unrelated parallel machine scheduling based on IG-TS algorithm
Autorzy:
Chi, Xinfu
Liu, Shijing
Li, Ce
Powiązania:
https://bibliotekanauki.pl/articles/2173693.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
warp knitting machine
parallel machine scheduling
iterative greedy algorithm
tabu search
osnowarka
planowanie maszyn równoległych
algorytm zachłanny iteracyjny
przeszukiwanie tabu
Opis:
This issue is a typical NP-hard problem for an unrelated parallel machine scheduling problem with makespan minimization as the goal and no sequence-related preparation time. Based on the idea of tabu search (TS), this paper improves the iterative greedy algorithm (IG) and proposes an IG-TS algorithm with deconstruction, reconstruction, and neighborhood search operations as the main optimization process. This algorithm has the characteristics of the strong capability of global search and fast speed of convergence. The warp knitting workshop scheduling problem in the textile industry, which has the complex characteristics of a large scale, nonlinearity, uncertainty, and strong coupling, is a typical unrelated parallel machine scheduling problem. The IG-TS algorithm is applied to solve it, and three commonly used scheduling algorithms are set as a comparison, namely the GA-TS algorithm, ABC-TS algorithm, and PSO-TS algorithm. The outcome shows that the scheduling results of the IG-TS algorithm have the shortest manufacturing time and good robustness. In addition, the production comparison between the IG-TS algorithm scheduling scheme and the artificial experience scheduling scheme for the small-scale example problem shows that the IG-TS algorithm scheduling is slightly superior to the artificial experience scheduling in both planning and actual production. Experiments show that the IG-TS algorithm is feasible in warp knitting workshop scheduling problems, effectively realizing the reduction of energy and the increase in efficiency of a digital workshop in the textile industry.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 4; art. no. e141724
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solving scheduling problems with integrated online sustainability observation using heuristic optimization
Autorzy:
Burduk, Anna
Musiał, Kamil
Balashov, Artem
Batako, Andre
Safonyk, Andrii
Powiązania:
https://bibliotekanauki.pl/articles/2173719.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
production scheduling
sustainable development
genetic algorithm
meta-heuristics
intelligent optimization methods of production systems
tabu search
harmonogramowanie produkcji
zrównoważony rozwój
algorytm genetyczny
przeszukiwanie tabu
metaheurystyki
inteligentne metody optymalizacji systemów produkcyjnych
Opis:
The paper deals with the issue of production scheduling for various types of employees in a large manufacturing company where the decision-making process was based on a human factor and the foreman’s know-how, which was error-prone. Modern production processes are getting more and more complex. A company that wants to be competitive on the market must consider many factors. Relying only on human factors is not efficient at all. The presented work has the objective of developing a new employee scheduling system that might be considered a particular case of the job shop problem from the set of the employee scheduling problems. The Neuro-Tabu Search algorithm and the data gathered by manufacturing sensors and process controls are used to remotely inspect machine condition and sustainability as well as for preventive maintenance. They were used to build production schedules. The construction of the Neuro-Tabu Search algorithm combines the Tabu Search algorithm, one of the most effective methods of constructing heuristic algorithms for scheduling problems, and a self-organizing neural network that further improves the prohibition mechanism of the Tabu Search algorithm. Additionally, in the paper, sustainability with the use of Industry 4.0 is considered. That would make it possible to minimize the costs of employees’ work and the cost of the overall production process. Solving the optimization problem offered by Neuro-Tabu Search algorithm and real-time data shows a new way of production management.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 6; art. no. e143830
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies