Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "function networks" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Application of Neural Networksin the Tests of Hand Grenade Fuses
Zastosowanie sieci neuronowych w badaniach zapalników do granatów ręcznych
Autorzy:
Ampuła, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/208533.pdf
Data publikacji:
2019
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
artificial intelligence
neural networks
activation function
hidden neurons
fuse
sztuczna inteligencja
sieci neuronowe
funkcja aktywacji
neurony ukryte
zapalnik
Opis:
The neural networks, which find currently use in the unusually wide range of problems, in such fields as: finance, medicine, geology or physics, were characterized in the article. It was accent, that neural networks are very sophisticated technique of modelling, able to map extremely complex functions. It was noticed particularly, that neural networks had a non-linear character, what very essentially improve the possibilities of their applications. Some previous applications of neural networks were introduced, both in the area of domestic and foreign, including also military applications. The fuse of UZRGM type (Universal Modernized Fuse of Hand Grenades) was characterized, describing his building and way of action, special attention-getting on the tested features during laboratory diagnostic tests. Necessary technical parameters for the first and the second laboratory diagnostic tests, whose purpose was to build two independent neural networks, on the basis of existing test results and undertaken post-diagnostic decisions were designed. A few artificial neural networks were made and finally the best two independent neural networks were chosen. The main parameters of the chosen active neural networks were introduced in the pictures. Concise information, relating to the built artificial neural networks, for the first and the second laboratory diagnostic tests of the fuses of UZRGM type, was presented in the end of the article. In the summary, clearly distinguished are advantages of the applications of the proposed evaluation method, which significantly shortens an evaluation process of new empirical test results and causes complex automatization of an evaluation process of the tested fuses.
W artykule scharakteryzowano sieci neuronowe, które znajdują obecnie zastosowanie w niezwykle wielu problemach, w takich dziedzinach jak: finanse, medycyna, geologia czy fizyka. Podkreślono, że sieci neuronowe są bardzo wyrafinowaną techniką modelowania, zdolną do odwzorowania nadzwyczaj złożonych funkcji. W szczególności zauważono, że sieci te mają charakter nieliniowy, co bardzo istotnie wzbogaca możliwości ich zastosowania. Przedstawiono niektóre dotychczasowe zastosowania sieci neuronowych, zarówno w obszarze krajowym, jak i zagranicznym, włączając w to także zastosowania wojskowe. Scharakteryzowano zapalnik typu UZRGM, opisując jego budowę oraz sposób działania, zwrócono szczególną uwagę na badane cechy podczas laboratoryjnych badań diagnostycznych. Zaprojektowano niezbędne parametry techniczne dla pierwszych i drugich laboratoryjnych badań diagnostycznych, których celem była budowa dwóch niezależnych sieci neuronowych na podstawie istniejących wyników badań oraz podjętych decyzji podiagnostycznych. Zbudowano wiele sztucznych sieci neuronowych, których wynikiem były zaprojektowane i wybrane jako najlepsze dwie niezależne sieci neuronowe. Na rysunkach przedstawiono główne parametry wybranych aktywnych sieci neuronowych. Na końcu artykułu znajdują się zwięzłe informacje dotyczące zbudowanych sztucznych sieci neuronowych dla pierwszych i drugich laboratoryjnych badań diagnostycznych zapalników typu UZRGM. W podsumowaniu jasno wyróżniono zalety stosowania zaproponowanej metody oceny, która znacząco skraca proces oceny nowych empirycznych wyników badań oraz powoduje pełną automatyzację procesu oceny badanych zapalników.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2019, 68, 1; 197-212
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Surmounting Information Gaps Using Average Probability Density Function
Pokonywanie luk informacyjnych za pomocą przeciętnej funkcji gęstości prawdopodobieństwa
Autorzy:
Piegat, A.
Landowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/156044.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci Bayesa
luki informacyjne
zasada nierozróżnialności
teoria niepewności
sztuczna inteligencja
teoria prawdopodobieństwa
Bayes networks
information gaps
principle of indifference
uncertainty theory
artificial intelligence
probability theory
Opis:
In many problems we come across the lack of complete data. The information gap causes that the task seems to be unsolvable. In many cases where the Bayes' networks or Bayes' rule are used, we come across the information gap which is the lack of a priori distribution. The article presents the methods of identifying the average probability density distribution when we know the range of variable and we have some quality knowledge on the distribution. The obtained average probability density distribution minimizes medium squared error. According to the authors' knowledge the average probability density distribution is the novelty in the word literature.
W wielu rzeczywistych problemach często spotykamy się z brakiem danych koniecznych do ich rozwiązania. Dotyczy to zwłaszcza zadań projektowania nowych systemów technicznych, ale i też ekonomicznych, medycznych, agrarnych i innych. Istnienie luk w problemie powoduje, że zadanie wydaje się nierozwiązywalne. W takiej sytuacji, aby w ogóle rozwiązać postawiony problem konieczne jest zaangażowanie ekspertów, którzy są często w stanie podać przybliżone oszacowanie danej brakującej do rozwiązania problemu. Niestety, oszacowania eksperckie zwykle nie są precyzyjnymi liczbami, lecz przedziałami możliwych wartości zmiennej lub też probabilistycznymi rozkładami możliwej wartości brakującej zmiennej. Zatem, aby rozwiązać dany problem konieczne jest wykonywanie operacji na rozkładach gęstości prawdopodobieństwa. Jednym z narzędzi służących do tego celu jest reguła Bayesa. Jest ona np. podstawą do przetwarzania informacji w sieciach wnioskowania probabilistycznego zwanych skrótowo sieciami Bayesa. Zwykle luką informacyjną w tych sieciach jest brak rozkładu a priori zmiennej koniecznego do obliczenia rozkładu a posteriori. W takiej sytuacji, jako rozkład a priori stosowany jest zwykle rozkład równomierny reprezentujący kompletną niewiedzę dotyczącą jakościowych cech rozkładu. Jednak taką wiedzę często posiada ekspert problemu. Artykuł prezentuje metodę identyfikacji przeciętnego rozkładu gęstości prawdopodobieństwa zmiennej dla przypadku, gdy ekspert zna nie tylko zakres możliwych wartości zmiennej, ale także posiada pewną wiedzę o jakościowych cechach rozkładu. Otrzymany z użyciem wiedzy eksperta przeciętny rozkład gęstości prawdopodobieństwa zmniejsza znacznie ryzyko popełnienia katastrofalnie dużych błędów w rozwiązywaniu problemów z lukami informacyjnymi. Według wiedzy autorów koncepcja przeciętnego rozkładu gęstości prawdopodobieństwa jest nowością w literaturze światowej.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 10, 10; 793-795
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych
Methods of adaptation of knowledge systems based on fuzzy sets
Autorzy:
Małolepsza, Olga
Powiązania:
https://bibliotekanauki.pl/articles/41205866.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
zbiory rozmyte
metody adaptacji
funkcja przynależności
sztuczna inteligencja
systemy rozmyte
rozmyte sieci neuronowe
fuzzy sets
adaptation method
membership function
artificial intelligence
fuzzy systems
fuzzy neural networks
Opis:
Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych są bardzo ważnym tematem, ponieważ udoskonalają i optymalizują wydajność systemów rozmytych poprzez właściwą metodę adaptacji. Metoda adaptacji zależy od konkretnego zastosowania, wymagań systemowych, dostępnych danych i dziedziny problemu. W artykule przedstawiono zagadnienia związane ze zbiorami rozmytymi oraz podano przykłady. Ponadto zaprezentowano metody adaptacji systemów wiedzy opartej na zbiorach rozmytych takie jak algorytmy genetyczne, programowanie ewolucyjne, algorytmy uczące się, uczenie przez wzmacnianie oraz adaptację online
Adaptation methods for knowledge systems based on fuzzy sets are a very important topic because they improve and optimize the performance of fuzzy systems through a proper adaptation method. The adaptation method depends on the specific application, system requirements, available data and the problem domain. In this paper, the issues related to fuzzy sets are presented and examples are given. In addition, methods for adaptation of fuzzy set-based knowledge systems such as genetic algorithms, evolutionary programming, learning algorithms, reinforcement learning and online adaptation are presented.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2023, 15, 1; 11-20
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies