Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy-neural system" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Neuro-fuzzy modelling based on a deterministic annealing approach
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908442.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
prediction
Opis:
This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty of the learning algorithm consists in the application of a deterministic annealing optimization method. It leads to an improvement in the neuro-fuzzy modelling performance. To show the validity of the introduced method, two examples of application concerning chaotic time series prediction and system identification problems are provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 561-576
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximation of phenol concentration using novel hybrid computational intelligence methods
Autorzy:
Pławiak, P.
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/907935.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
soft computing
neural network
genetic algorithm
fuzzy system
evolutionary neural system
pattern recognition
chemometrics
przetwarzanie miękkie
sieć neuronowa
algorytm genetyczny
system rozmyty
rozpoznawanie obrazu
chemometria
Opis:
This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg–Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 165-181
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis of intellectual subsystems of dynamic diagnosis of the condition of turbine units thermal power
Synteza inteligentnego podsystemu dynamicznej diagnostyki stanu turbogeneratorów elektrowni cieplnych
Autorzy:
Suleimenov, A.
Suleimenov, B.
Zhirnova, O.
Powiązania:
https://bibliotekanauki.pl/articles/408537.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
technical diagnostics
intelligent technologie
expert system
fuzzy system
neural network
diagnostyka techniczna
inteligentna technologia
system ekspercki
system rozmyty
sieć neuronowa
Opis:
Technique of creating a sub-line diagnostics status turbine unit thermal power plant based on an analysis of its diagnostic features. Rapid assessment of the technical state of turbine unit allows an early stage to detect the possibility of an emergency and to localize it. It involves the integration of the subsystems of the existing process control system (PCS), which will allow more efficient use of its information, hardware and software. Evaluation of the technical condition of the turbine unit thermal power plant is proposed to determine the use of modern intelligent technologies. The proposed method was used in the development of rapid diagnostic subsystems technical state of turbine of thermal power in Almaty.
Zaproponowano metodykę opracowania podsystemu dynamicznej diagnostyki stanu turbogeneratora elektrowni cieplnej, która bazuje na analizie jego cech diagnostycznych. Dynamiczna ocena technicznego stanu turbogeneratora pozwala na wykrycie we wczesnym stadium awaryjnych sytuacji i jej lokalizacji. Proponuje się integrację tego podsystemu z istniejącym systemem automatycznego sterowania procesem technologicznym, co pozwoli bardziej efektywnie wykorzystać jego informacyjne, techniczne i programowe zabezpieczenia. Ocena technicznego stanu turbogeneratora elektrowni cieplnej proponuje się określić z wykorzystaniem współczesnych technologii inteligentnych. Zaproponowana metodyka była wykorzystana przy opracowaniu podsystemu diagnostyki dynamicznej stanu technicznego turbogeneratora w elektrowni cieplnej w Ałmaty.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 2; 40-43
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908395.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
sieć neuronowa rozmyta
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
Opis:
A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a “freezing” phase and ε-insensitive learning by solving a system of linear inequalities are applied. This method yields an improved neuro-fuzzy modeling quality in the sense of an increase in the generalization ability and robustness to outliers. To show the advantages of the proposed algorithm, two examples of its application concerning benchmark problems of identification and prediction are considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 3; 357-372
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fusion Technology of Neural Networks and Fuzzy Systems: a Chronicled Progression from the Laboratory to Our Daily Lives
Autorzy:
Takagi, H.
Powiązania:
https://bibliotekanauki.pl/articles/911142.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
system rozmyty
algorytmy
cooperative models
neural networks
fuzzy systems
genetic algorithms
real world applications
overview
Opis:
We chronicle the research on the fusion technology of neural networks and fuzzy systems (NN+FS), the models that have been proposed from this research, and the commercial products and industrial systems that have adopted these models. First, we review the NN+FS research activity during the early stages of their development in Japan, the US, and Europe. Next, following the classifi- cation of NN+FS models, we show the ease of fusing these technologies based on the similarities of the data flow network structures and the non-linearity realization strategies of NNs and FSs. Then, we describe several models and applications of NN+FS. Finally, we introduce some important and recently developed NN+FS patents.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 647-673
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing in model-based predictive control
Autorzy:
Tatjewski, P.
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/908473.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie procesami
sterowanie predykcyjne
system nieliniowy
system rozmyty
sieć neuronowa
process control
model predictive control
nonlinear systems
fuzzy systems
neural networks
Opis:
The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural network model of a process in standard MPC structures to modeling parts or entire MPC controllers with neural networks. Finally, a simulation example and conclusions are given.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 1; 7-26
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data-driven techniques for the fault diagnosis of a wind turbine benchmark
Autorzy:
Simani, S.
Farsoni, S.
Castaldi, P.
Powiązania:
https://bibliotekanauki.pl/articles/330715.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault diagnosis
analytical redundancy
fuzzy system
neural network
residual generator
fault estimation
wind turbine benchmark
diagnostyka uszkodzeń
redundancja analityczna
system rozmyty
sieć neuronowa
estymacja błędu
turbina wiatrowa
Opis:
This paper deals with the fault diagnosis of wind turbines and investigates viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator, i.e., the fault estimate, involves data-driven approaches, as they can represent effective tools for coping with poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the proposed data-driven solutions rely on fuzzy systems and neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear autoregressive models with exogenous input, as they can represent the dynamic evolution of the system along time. The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are also compared with those of other model-based strategies from the related literature. Finally, a Monte-Carlo analysis validates the robustness and the reliability of the proposed solutions against typical parameter uncertainties and disturbances.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 2; 247-268
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies