Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "osiadanie terenu" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Monitoring osiadań terenu pod wpływem eksploatacji górniczej metodą satelitarnej interferometrii radarowe
Autorzy:
Perski, Z.
Chybiorz, R.
Nita, J.
Powiązania:
https://bibliotekanauki.pl/articles/130117.pdf
Data publikacji:
2001
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
satelitarna interferometria radarowa
InSAR
osiadanie terenu
SAR interferometry
surface subsidence
Opis:
This paper presents detailed analysis of interferometric maps of subsidence in Upper Silesian Coal Basin. For the period of one year (from October 1997 to October 1998) the subsidence map have been calculated based on leveling observations. For the same period another subsidence map have been processed from Jive ERS SAR interferograms. The comparison of these data shows that the range and extents of subsidence pattern strictly correlates however, there are large differences in amount of subsidence. This research has been carried under European Space Agency project АОЗ-127. The agreement between University of Silesia and Marshal Office of Silesia Province allows performing the analyses towards to integration of interferometric data with regional GIS system of Silesia.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2001, 11; 5-35-5-40
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie osiadań powierzchni terenu przy użyciu sieci neuronowych
Application of neural networks to the prediction of the surface subsidence
Autorzy:
Pawluś, D.
Powiązania:
https://bibliotekanauki.pl/articles/349657.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
osiadanie powierzchni terenu
sieci neuronowe
neural network
surface subsidence
Opis:
Artykuł prezentuje wyniki pracy nad utworzeniem sieci neuronowej prognozującej osiadania powierzchni terenu na podstawie danych dotyczących planowanej eksploatacji, takich jak: głębokość i grubość pokładu, położenie, wielkość oraz kształt pola eksploatacyjnego, kąt zasięgu wpływów głównych oraz współczynnik eksploatacji. Do tworzenia sieci wykorzystano pakiet Statistica, natomiast dane do uczenia sieci uzyskano z modelu teoretycznego Budryka-Knothego. Prognozy uzyskane przez sieć, dla której otrzymano najlepsze dopasowanie wyników, przedstawiono na rysunkach 4 i 5. Aktualnie prowadzone są prace nad znalezieniem sieci lub zespołu sieci, które wyznaczałyby osiadania powierzchni dla obszaru zawierającego więcej niż jedno pole eksploatacyjne.
This paper presents an application of neural networks for the prediction of a surface subsidence. The main advantage of the artificial neural network approach is that there is no need to assume the type of functional relation and there is no need to have an accurate knowledge of material properties in the area of interest. Only the geometry of the neural network has to be chosen and the learning procedure has to be successfully completed. The networks were used as a solution to following problem. There was given excavated quadrangular area which was described by the following factors: the coordinates of vertices of a worked area, the seam thickness, the depth of the opening, an angle of the mining influence and the subsidence factor. We want to predict the final subsidence of any point of surface. The multi-layer feed-forward networks were used for modeling the surface subsidence trough. The supervised learning has been used. Figures 4 and 5 present the final subsidences of the points lying on two lines. The neural networks could be used for computing the surface subsidence. The author will intend to use networks for computing the other factors of the surface deformations.
Źródło:
Górnictwo i Geoinżynieria; 2007, 31, 3; 329-335
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Próba zastosowania sieci neuronowych do prognozowania osiadań powierzchni terenu powstałych na skutek eksploatacji górniczej
Application of neural networks to the predication of the surface subsidence
Autorzy:
Pawluś, D.
Powiązania:
https://bibliotekanauki.pl/articles/350416.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
osiadanie powierzchni terenu
sieci neuronowe
surface subsidence
neural network
Opis:
W artykule przedstawiono zastosowanie sieci neuronowych do przewidywania osiadań powierzchni terenu powstałych w wyniku eksploatacji górniczej. Sieci neuronowe są często wykorzystywane do tego by na podstawie pewnych danych wejściowych przewidywać określone dane wyjściowe. Zaletą sieci neuronowej jako narzędzia prognozującego jest to, że sieć w wyniku procesu uczenia może nabyć zdolności przewidywania wyjściowych sygnałów wyłącznie na podstawie obserwacji tzw. ciągu uczącego, bez konieczności formułowania hipotez co do rodzaju zależności między nimi. Celem badań było utworzenie takich sieci, które na podstawie danych dotyczących planowanej eksploatacji, głębokość i grubość pokładu, położenie, wielkość oraz kształt pola eksploatacyjnego mogły wyznaczyć obniżenia terenu. Dane do uczenia sieci uzyskano z modeli teoretycznych. Wartości osiadań obliczono na podstawie teorii Budryka-Knothego. W artykule zaprezentowano testowane modele sieci oraz wyniki uzyskane z sieci najlepiej rozwiązującej problem. Na ich podstawie można stwierdzić, że możliwe jest utworzenie sieci neuronowej prognozującej osiadania powierzchni, pod warunkiem jednak, że będziemy dysponować dużą ilością danych do uczenia sieci (rzędu kilku, a nawet kilkudziesięciu tysięcy). Dlatego też dużym problemem jest utworzenie sieci neuronowej uczonej na podstawie przypadków rzeczywistych. Stąd planowane jest kontynuowanie badań w tym zakresie.
This paper presents an application of neural networks for the prediction of a surface subsidence. The main advantage of the artificial neural network approach is that there is no need to assume the type of functional relation and there is no need to have an accurate knowledge of material properties in the area of interest. Only the geometry of the neural network has to be chosen and the learning procedure has to be successfully completed. There are several types of neural network geometry. The multi-layer feed-forward networks were used for modeling the surface subsidence trough. Neural networks need to learn in order to produce useful results. There are two different kinds of learning: unsupervised learning and supervised learning. The supervised learning has been used. The networks were used as a solution to following problem. There was given excavated quadrangular area which was described by the following factors: the cordinates of vertices of a worked area, the seam thickness, the depth of the opening. We want to predicate the final subsidence of any point P(x,y). The neural networks could be used for computing the surface subsidence. The author will intend to use networks for computing the other factors of the surface deformations.
Źródło:
Górnictwo i Geoinżynieria; 2006, 30, 4; 79-87
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of measured and predicted land surface subsidences caused by retreat mining
Autorzy:
Majcherczyk, T.
Kryzia, K.
Powiązania:
https://bibliotekanauki.pl/articles/178550.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
osiadanie powierzchni
kopalnie węgla
deformacja gruntów
program EDNOPN
wyrobiska górnicze
deformacja terenu górniczego
eksploatacja górnicza
surface subsidence
coal underground mining
land deformation
EDNOPN program
retreat mining
mining ground deformation
Opis:
This article presents the impact of the retreat mining (i.e., involving an intended collapse of the excavation roof, subsequent to extraction) on the subsidence of the ground surface. The analysis was carried out for two areas of coal underground mining located in the Upper Silesian Coal Basin (Górnośląskie Zagłębie Węglowe). The assessment of the influence of exploitation on the ground surface was based on the results of geodetic measurements performed over a long period of time, whereas the land deformation prediction was made with the use of the EDNOPN program. The calculated and the predicted values were further compared, and the parameters of theory were determined. The results discussed in this paper have been shown by way of diagrams. The observed differences in the processes of vertical displacement were used in the analysis which took into account the degree to which the rock mass had been disturbed during the previous excavations, as well as the type of incumbent rock in the area under study.
Źródło:
Studia Geotechnica et Mechanica; 2013, 35, 1; 143-156
0137-6365
2083-831X
Pojawia się w:
Studia Geotechnica et Mechanica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies