Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "processing machines" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Solving Support Vector Machine with Many Examples
Autorzy:
Białoń, P.
Powiązania:
https://bibliotekanauki.pl/articles/308497.pdf
Data publikacji:
2010
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
concept drift
convex optimization
data mining
network failure detection
stream processing
support vector machines
Opis:
Various methods of dealing with linear support vector machine (SVM) problems with a large number of examples are presented and compared. The author believes that some interesting conclusions from this critical analysis applies to many new optimization problems and indicates in which direction the science of optimization will branch in the future. This direction is driven by the automatic collection of large data to be analyzed, and is most visible in telecommunications. A stream SVM approach is proposed, in which the data substantially exceeds the available fast random access memory (RAM) due to a large number of examples. Formally, the use of RAM is constant in the number of examples (though usually it depends on the dimensionality of the examples space). It builds an inexact polynomial model of the problem. Another author's approach is exact. It also uses a constant amount of RAM but also auxiliary disk files, that can be long but are smartly accessed. This approach bases on the cutting plane method, similarly as Joachims' method (which, however, relies on early finishing the optimization).
Źródło:
Journal of Telecommunications and Information Technology; 2010, 3; 65-70
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of speaker dependent and speaker independent emotion recognition
Autorzy:
Rybka, J.
Janicki, A.
Powiązania:
https://bibliotekanauki.pl/articles/330055.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
speech processing
emotion recognition
EMO-DB
support vector machines
artificial neural network
przetwarzanie mowy
rozpoznawanie emocji
maszyna wektorów wspierających
sztuczna sieć neuronowa
Opis:
This paper describes a study of emotion recognition based on speech analysis. The introduction to the theory contains a review of emotion inventories used in various studies of emotion recognition as well as the speech corpora applied, methods of speech parametrization, and the most commonly employed classification algorithms. In the current study the EMO-DB speech corpus and three selected classifiers, the k-Nearest Neighbor (k-NN), the Artificial Neural Network (ANN) and Support Vector Machines (SVMs), were used in experiments. SVMs turned out to provide the best classification accuracy of 75.44% in the speaker dependent mode, that is, when speech samples from the same speaker were included in the training corpus. Various speaker dependent and speaker independent configurations were analyzed and compared. Emotion recognition in speaker dependent conditions usually yielded higher accuracy results than a similar but speaker independent configuration. The improvement was especially well observed if the base recognition ratio of a given speaker was low. Happiness and anger, as well as boredom and neutrality, proved to be the pairs of emotions most often confused.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 797-808
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies