Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "solar burst type III" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Statistical Study of Nine Months Distribution of Solar Flares
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412246.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar eclipse
solar radio
burst
type III
e-CALLISTO
Opis:
Solar flare is one of the solar activities that take place in the outermost layer of the corona. Solar flares can heat the material to several million degrees in just a few minutes and at the same time they release the numerous amount of energy. It is believed that a change of magnetic field lines potentially creates the solar flares. The objectives of the study are to identify and compare the types of solar flares (in X-Ray) region and to improve understanding of solar flares. Data are taken from the NOAA website, from the United States Department of Commerce, NOAA, Space Weather Prediction Center (SPWC). Solar radio flux readings were merged together with the three classes and a total of nine graphs were plotted. In illustrating the relationship of solar radio flux and solar flares, it can be explained by studying the range values of flux corresponding to flares values. From this case study, it was found that the minimum value of solar radio flux in order for the flares to occur is equivalent 68 x 10-22Wm-2Hz-1. Thus, whenever the values of solar radio flux are high, there should be a higher number of flares produced by the sun. The overall range of solar radio flux recorded in this study ranging from 68 x 10-22 Wm-2Hz-1 to 96 x 10-22 Wm-2Hz-1. Observing and collecting data from the Sun and develop our very own new prediction methods will leads the accuracy of the prediction of the behavior of the Sun more precisely.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 14, 1; 1-11
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Propagation of An Impulsive Coronal Mass Ejections (CMEs) due to the High Solar Flares and Moreton Waves
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/412288.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar eclipse
solar radio
burst
type III
e-CALLISTO
Opis:
This paper provides a short review of some of the basic concepts related to the origin of Coronal Mass Ejections (CMEs). The numerous ideas which have been put forward to elucidate the initiation of CMEs are categorized in terms of whether this event is a gradual CME or impulsive CME. In this case, an earth-directed Coronal Mass Ejection (CME) was observed on April 2, 2014 by the Large Angle Spectrometric Coronagraph (LASCO) C2. This recent observations obtained a large impulsive CMEs. The CME, originating from the active region AR2027. The speed of CMEs is 1600 kms-1. A halo CME, a bright expanding ring at the North-West region is exploded beginning at about 14:36 UT, and the process of departing, expansion and propagation are highlighted. We discuss the correspondence of this event with the structure of the CME in the LASCO data. It is believed that the high solar flare and a Moreton waves initiate this kind of CMEs.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 14, 1; 118-126
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Scenario of Solar Radio Burst Type III During Solar Eclipse on 14th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411752.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar eclipse
solar radio
burst
type III
e-CALLISTO
Opis:
A compact solar flare was observed during a total solar eclipse event on 13-14 November 2012. This phenomenon is beginning in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. During the eclipse, the highest magnitude was 1.0500, occurring only 12 hours before perigee, with the maximum eclipse totality lasting just over four minutes. Considering the observational facts, the solar radio burst type III can be detected from the National Space Centre Malaysia by the Compound Low Cost Low Frequency Transportable Observatory (CALLISTO) system from 00:00 UT –1:30 UT. The group and individual solar burst type III can be detected in the region of 150-400 MHz. However, the eclipse cannot be observed from our site. From the observation, it was found that the eruption in the active region is becoming more active with a tens of groups solar radio burst type III can be observed. It continuing bursting within the first one hour. The sunspot number exceeds to 108 and solar wind speed 454.9 km/sec. Still the Sun remains active and we need to consider other processes to explain in detailed the injection, energy loss and the mechanism of the acceleration of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 135-143
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Observations of Different Type of Bursts Associated with M 6.3 Solar Flares
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Powiązania:
https://bibliotekanauki.pl/articles/412558.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type III
type U
e-CALLISTO
Opis:
Variation of solar bursts due to solar flares such as type an isolated type III , a complex type III, U is being highlighted. These bursts occurred on 9th March 2012 at the National Space Centre, Sg. Lang, Selangor, Malaysia Here, we study a unique case with a combination of two types burst associated with solar flare and CMEs. Our observation is focused on the low frequency region starting from 150 MHz till 400 MHz. We found that a solar flare type solar flare type M 6.3 which occurred in active region AR 1429 starting from 3:32 UT and ending at 05:00 UT. The flare has been confirmed to be the largest flare since 2005. Some physical parameters will be measured. We then compared our results with X-ray data from NOAA Space Weather Prediction Centre (SWPC).
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 4; 29-36
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies and Timeline of the Solar Burst Type II Fragmented
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412634.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
We report the timeline of the solar radio burst Type II that formed but fragmented at certain point based on the eruption of the solar flare on 13th November 2012 at 2:04:20 UT. The active region AR 1613 is one of the most active region in 2012. It is well known that the magnetic energy in the solar corona is explosively released before converted into the thermal and kinetic energy in solar flares. In this work, the Compound Astronomical Low-frequency, Low-cost Instrument for Spectroscopy Transportable Observatories (CALLIISTO) system is used in obtaining a dynamic spectrum of solar radio burst data. There are eight active regions and this is the indicator that the Sun is currently active. Most the active regions radiate a Beta radiation. The active regions 1610, 1611 and 1614 are currently the largest sunspots on the visible solar disk. There is an increasing chance for an isolated M-Class solar flare event. It is also expected that there will be a chance of an M flare, especially from AR 1614 and 1610. Although these two observations (radio and X-rays) seem to be dominant on the observational analysis, we could not directly confirmed that this is the only possibility, and we need to consider other processes to explain in detailed the injection, energy loss and the mechanism of the acceleration of the particles. In conclusion, the percentage of energy of solar flare becomes more dominant rather than the acceleration of particles through the Coronal Mass Ejections (CMEs) and that will be the main reason why does the harmonic structure of type II burst is not formed. This event is one fine example of tendencies solar radio burst type III, which makes the harmonic structure of solar radio burst type II fragmented.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 12; 84-102
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation on a Broken Solar Burst Type II during High Activities in AR1613 on 13th November 2012
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Zulkifli, W. N. A. W.
Ibrahim, M. B.
Arifin, N. S.
Amran, N. A.
Powiązania:
https://bibliotekanauki.pl/articles/411666.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
e-CALLISTO
Opis:
The present article is an attempt to analyze the solar burst Type II observations based on solar flare and Coronal Mass Ejections (CMEs) events. We choose an intriguing type II radio burst with a velocity of 1193 kms-1 that occurred on 2012 November 13 at 2:04:20 UT. In this case, the study of solar radio burst type III is of paramount importance because of the fact that it helps to gain an insight of generation mechanisms of solar flare and Coronal Mass Ejections (CMEs) phenomena. Here, we have got a reasonably clear idea of the various forms under which the type III continuum emission may appear and potentially form a type II burst. However, in this case, the Type II solar burst only successfully forms a fundamental structure within the first few minute period, but broken suddenly before evolve a harmonic structure. This phenomenon is very interesting to be tackled and study. How the burst suddenly broken is still ongoing research seems the event is very rare and hard to be proved. There are a few questions that cause this unique situation which related to: (i) the intensity and duration of type III burst which also related to the classification of solar flare (ii) the probabilities CMEs to occur during that time and also the factor of the total amount of massive burst that exploded, Thus, we can conclude that the solar burst type III event still tells us an enigmatic characteristic from time to time due to the relationship of energetic particles and streams of particles with coronal magnetic fields and the pattern of Sun activity due to the 24th solar cycle. It might an interesting to study in detail the main factor that caused the Type II solar burst broken. Indirectly, it might because of the very intense of solar flares that make the percentage of energy of solar flare become more dominant rather than the acceleration of particles through the Coronal Mass Ejections. Thus, we realize that the potential energy during this event is higher than the kinetic energy of the particles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 9; 8-15
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of Selected Solar Radio Bursts Based on Solar Activity Detected by e- CALLISTO (Malaysia)
Autorzy:
Hamidi, Z. S.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/412630.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
low frequency
solar radio
burst
type II
type III
type IV
type V
type U
e-CALLISTO
Opis:
One of the main reasons to study more about the dynamics of solar radio bursts is because solar these bursts can interfere with the Global Positioning System (GPS) and communications systems. More importantly, these bursts are a key to understand the space weather condition. Recent work on the interpretation of the low frequency region of a main solar burst is discussed. Continuum radio bursts are often related to the solar activities such as an indication of the formation of sunspot, impulsive phase of solar flares and Coronal Mass Ejections (CMEs) and their frequencies correspond to the densities supposed to exist in the primary energy release volume. Specifically, solar burst in low frequency play an important role in interpretation of Sun activities. In this work, we have selected few solar bursts that successfully detected by our station at the National Space Centre, Banting Selangor. Our objective is to correlate the solar burst with Sun activities by looking at the main sources that responsibility with the trigger of solar burst. It is found that type II burst is dominant with Coronal Mass Ejections (CMEs), type III burst associated with solar flare, IV burst with the formation of active region and type U burst high solar flare. We believed that this work is a good start to monitor Sun’s activities in Malaysia as equatorial country.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 13, 2; 144-159
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analysis of Solar Burst Type II, III, and IV and Determination of a Drift Rate of a Single Type III Solar Burst
Autorzy:
Hamidi, Z. S.
Ibrahim, M. B.
Shariff, N. N. M.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/411732.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
sun
solar burst
type II,III,IV
radio region
X-ray region
solar flare
active region
Opis:
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 19, 2; 160-170
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Tendencies Group Type III Burst Form Type II Burst During Low activity
Autorzy:
Hamidi, Z. S.
Mokthtar, Fatin Nabila
Shariff, N. N. M.
Ali, Marhana Omar
Husien, Nurulhazwani
Sabri, S. N. U.
Zainol, N. H.
Monstein, C.
Powiązania:
https://bibliotekanauki.pl/articles/1191365.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Coronal Mass Ejections (CMEs)
X-ray region
radio region
solar burst
sun
sun type II
sun type III
Opis:
Using the e-CALLISTO network radio observations on 1st June 2015, we present an analysis of the complex type III and type II solar radio bursts during low activity. This event occurred on 1st July 2015 at 13:52 UT (complex solar burst type III) and 13:40 UT - 13:44 UT (solar burst type II). Solar burst type detected at (i) BIR, (ii) BLENSW, (iii) Essen, (iv) Glascow (v) Osra, (vi) Rwanda. The spectral shape consists of high flux densities at meter wavelengths. The energy going into plasma heating during each flare was estimated by computing the time evolution of the energy content of the thermal plasma and obtaining the peak value. This constitutes a lower limit to the thermal energy, since it does not account for the cooling of the plasma prior to this time nor to any heating at later times. It is also believed that the meter wavelength branch of the this type III spectrum may be attributable to second-phase accelerated electrons to form type II burst. There are four sunspots of the active regions (AR2355, AR2356, AR2357, and AR2358) during this event. The solar wind recorded during the event is 342.4 km/s and the density of the proton recorded is 4.1 protons/cm3. Moreover, the are some evidence that radio-quiet CMEs mostly came from the edges of the sun. The main goal of this study was to determine whether is there any possibilities that the radio burst can be formed even the Sun is at low activity and this event is one of the candidate events.
Źródło:
World Scientific News; 2016, 34; 121-134
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies