Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "percentage relative efficiency (PRE)" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Developing calibration estimators for population mean using robust measures of dispersion under stratified random sampling
Autorzy:
Audu, Ahmed
Singh, Rajesh
Khare, Supriya
Powiązania:
https://bibliotekanauki.pl/articles/1054567.pdf
Data publikacji:
2021-06-04
Wydawca:
Główny Urząd Statystyczny
Tematy:
calibration
outliers
percentage relative efficiency (PRE)
stratified sampling
Opis:
In this paper, two modified, design-based calibration ratio-type estimators are presented. The suggested estimators were developed under stratified random sampling using information on an auxiliary variable in the form of robust statistical measures, including Gini’s mean difference, Downton’s method and probability weighted moments. The properties (biases and MSEs) of the proposed estimators are studied up to the terms of firstorder approximation by means of Taylor’s Series approximation. The theoretical results were supported by a simulation study conducted on four bivariate populations and generated using normal, chi-square, exponential and gamma populations. The results of the study indicate that the proposed calibration scheme is more precise than any of the others considered in this paper.
Źródło:
Statistics in Transition new series; 2021, 22, 2; 125-142
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies