Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nieliniowy" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Synthesis of neural network controller with a reference model
Synteza regulatora neuronowego z modelem referencyjnym
Autorzy:
Nawrocka, A.
Powiązania:
https://bibliotekanauki.pl/articles/368848.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sterowanie predykcyjne
obiekt nieliniowy
model referencyjny
predictive control
non-linear object
reference model
Opis:
In the article there has been presented a structure of a control system with a neural network controller basing on a reference model. In the first part of the article there is a short overview of neural control models. In the following part, an identification of a non-linear object, which was a hydrostatic transmission, was conducted with the help of artificial neural networks; next, different identification structures of artificial neural networks were tested. The last stage covered a synthesis of a neural controller with a reference model and conducting simulation tests of the suggested structures in the system of the control with a non-linear object.
W artykule została przedstawiona struktura układu regulacji z neuronowym regulatorem bazującym na modelu referencyjnym. W pierwszej części znajduje się przegląd neuronowych modeli sterowania. W kolejnej części przedstawiono przeprowadzoną identyfikację za pomocą sztucznych sieci neuronowych nieliniowego obiektu, którym była przekładnia hydrostatyczna. Właściwości przekładni hydrostatycznej sprawiają, że jest ona obiektem wrażliwym na różnego rodzaju zakłócenia, które utrudniają sterowanie jej pracą. Ze względu na właściwości obiektu regulacji, tzn. nieliniowość i niestacjonarność, zastosowanie klasycznych regulatorów nie jest zadowalające. Z tego względu podjęto próbę wykorzystania zaawansowanych technologii do sterowania. Zbadano różne struktury identyfikacyjne sztucznych sieci neuronowych. Ostatni etap prac obejmował syntezę regulatora neuronowego z modelem referencyjnym oraz przeprowadzenie badań symulacyjnych zaproponowanych struktur w układzie regulacji z obiektem nieliniowym.
Źródło:
Mechanics and Control; 2010, 29, 1; 26-31
2083-6759
2300-7079
Pojawia się w:
Mechanics and Control
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Input constraints handling in an MPC/feedback linearization scheme
Autorzy:
Deng, J.
Becerra, V. M.
Stobart, R.
Powiązania:
https://bibliotekanauki.pl/articles/907653.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
sterowanie odwrotne
sieć neuronowa
system nieliniowy
predictive control
feedback linearization
neural network
nonlinear system
constraints
Opis:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real timeMPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 2; 219-232
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear model predictive control for processes with complex dynamics: A parameterisation approach using Laguerre functions
Autorzy:
Ławryńczuk, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/329999.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
process control
nonlinear model predictive control
Laguerre functions
linearisation
sterowanie procesami
model nieliniowy
sterowanie predykcyjne
funkcje Laguerre’a
Opis:
Classical model predictive control (MPC) algorithms need very long horizons when the controlled process has complex dynamics. In particular, the control horizon, which determines the number of decision variables optimised on-line at each sampling instant, is crucial since it significantly affects computational complexity. This work discusses a nonlinear MPC algorithm with on-line trajectory linearisation, which makes it possible to formulate a quadratic optimisation problem, as well as parameterisation using Laguerre functions, which reduces the number of decision variables. Simulation results of classical (not parameterised) MPC algorithms and some strategies with parameterisation are thoroughly compared. It is shown that for a benchmark system the MPC algorithm with on-line linearisation and parameterisation gives very good quality of control, comparable with that possible in classical MPC with long horizons and nonlinear optimisation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 1; 35-46
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Actuator fault tolerance in control systems with predictive constrained set-point optimizers
Autorzy:
Marusak, P. M.
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/929879.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie odporne na błędy
sterowanie predykcyjne
optymalizacja
system nieliniowy
fault tolerant control
model predictive control
set-point optimization
nonlinear system
Opis:
Mechanisms of fault tolerance to actuator faults in a control structure with a predictive constrained set-point optimizer are proposed. The structure considered consists of a basic feedback control layer and a local supervisory set-point optimizer which executes as frequently as the feedback controllers do with the aim to recalculate the set-points both for constraint feasibility and economic performance. The main goal of the presented reconfiguration mechanisms activated in response to an actuator blockade is to continue the operation of the control system with the fault, until it is fixed. This may be even long-term, if additional manipulated variables are available. The mechanisms are relatively simple and consist in the reconfiguration of the model structure and the introduction of appropriate constraints into the optimization problem of the optimizer, thus not affecting the numerical effectiveness. Simulation results of the presented control system for a multivariable plant are provided, illustrating the efficiency of the proposed approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 4; 539-551
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sub-Optimal Nonlinear Predictive and Adaptive Control Based on the Parametric Volterra Model
Autorzy:
Haber, R.
Bars, R.
Lengyel, O.
Powiązania:
https://bibliotekanauki.pl/articles/908307.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
sterowanie nieliniowe
sterowanie optymalne
układ nieliniowy
adaptacyjny układ sterowania
predictive control
nonlinear control
optimal control
nonlinear systems
adaptive control
Opis:
Predictive control algorithms have been worked out mainly to control linear plants. There is a great demand to apply different control ideas to nonlinear systems. Using predictive control algorithms for nonlinear systems is a promising technique. Extended horizon one-step-ahead and long-range optimal predictive control algorithms are given here for the parametric Volterra model (which includes also the generalized Hammerstein model). A quadratic cost function is minimized which considers the quadratic deviations of the reference signal and the output signal at a future point (or points) beyond the dead time and also penalizes large control signal increments. For prediction of the output signal, a predictive model is applied which uses information about the input and output signals up to the current time. A predictive transformation of the nonlinear dynamic model is given. The incremental model is advantageous since the cost function contains the control increment and not the control signal itself. An incremental transformation of the predictive forms is also described. Sub-optimal solutions to the optimal control algorithms are discussed with different assumptions for the control signal during the control horizon. The effect of the different strategies and the effect of the tuning parameters is investigated through simulation examples.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 1; 161-173
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Finite horizon nonlinear predictive control by the Taylor approximation: Application to robot tracking trajectory
Autorzy:
Hedjar, R.
Toumi, R.
Boucher, P.
Dumur, D.
Powiązania:
https://bibliotekanauki.pl/articles/908454.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
układ nieliniowy
układ ciągły
sterowanie predykcyjne
aproksymacja Taylora
śledzenie trajektorii
nonlinear continuous time predictive control
Taylor approximation
tracking trajectory and robot
Opis:
In industrial control systems, practical interest is driven by the fact that today’s processes need to be operated under tighter performance specifications. Often these demands can only be met when process nonlinearities are explicitly considered in the controller. Nonlinear predictive control, the extension of well-established linear predictive control to nonlinear systems, appears to be a well-suited approach for this kind of problems. In this paper, an optimal nonlinear predictive control structure, which provides asymptotic tracking of smooth reference trajectories, is presented. The controller is based on a finite–horizon continuous time minimization of nonlinear predicted tracking errors. A key feature of the control law is that its implementation does not need to perform on-line optimization, and asymptotic tracking of smooth reference signal is guaranteed. An integral action is used to increase the robustness of the closed-loop system with respect to uncertainties and parameters variations. The proposed control scheme is first applied to planning motions problem of a mobile robot and, afterwards, to the trajectory tracking problem of a rigid link manipulator. Simulation results are performed to validate the tracking performance of the proposed controller.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 527-540
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing in model-based predictive control
Autorzy:
Tatjewski, P.
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/908473.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie procesami
sterowanie predykcyjne
system nieliniowy
system rozmyty
sieć neuronowa
process control
model predictive control
nonlinear systems
fuzzy systems
neural networks
Opis:
The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural network model of a process in standard MPC structures to modeling parts or entire MPC controllers with neural networks. Finally, a simulation example and conclusions are given.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 1; 7-26
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability
Autorzy:
Marusak, P. M.
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/907866.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system nieliniowy
system rozmyty
sterowanie predykcyjne
stabilność
sterowność wymuszona
nonlinear system
fuzzy system
model predictive control
stability
constrained control
dual-mode control
Opis:
Dual-mode fuzzy dynamic matrix control (fuzzy DMC-FDMC) algorithms with guaranteed nominal stability for constrained nonlinear plants are presented. The algorithms join the advantages of fuzzy Takagi-Sugeno modeling and the predictive dual-mode approach in a computationally efficient version. Thus, they can bring an improvement in control quality compared with predictive controllers based on linear models and, at the same time, control performance similar to that obtained using more demanding algorithms with nonlinear optimization. Numerical effectiveness is obtained by using a successive linearization approach resulting in a quadratic programming problem solved on-line at each sampling instant. It is a computationally robust and fast optimization problem, which is important for on-line applications. Stability is achieved by appropriate introduction of dual-mode type stabilization mechanisms, which are simple and easy to implement. The effectiveness of the proposed approach is tested on a control system of a nonlinear plant-a distillation column with basic feedback controllers.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 1; 127-141
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies