Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nieliniowe sterowanie" wg kryterium: Wszystkie pola


Wyświetlanie 1-8 z 8
Tytuł:
Nieliniowe sterowanie predykcyjne ramion manipulatorów
Nonlinear Predictive Control of Manipulator Arms
Autorzy:
Tatjewski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/27312429.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
sterowanie manipulatorów
sterowanie nieliniowe
sterowanie predykcyjne
opóźnienie sterowania
szybkie próbkowanie
manipulator control
nonlinear control
model predictive control
control delay
fast sampling
Opis:
Przedmiotem artykułu są algorytmy sterowania predykcyjnego (typu MPC - Model Predictive Control) ramion manipulatorów sztywnych. Zastosowano MPC z modelem w przestrzeni stanów i wykorzystano najnowszą technikę tłumienia zakłóceń i błędów modelowania, pozwalającą uniknąć dynamicznego modelowania zakłóceń lub uciekania się do dodatkowych technik ich eliminowania, takich jak SMC. Rozważane są przede wszystkim najbardziej efektywne obliczeniowo algorytmy MPC-NPL (NPL - Nonlinear Prediction and Linearization), w dwóch wersjach: z optymalizacją QP (Quadratic Programming) z ograniczeniami i z jawną optymalizacją bez ograniczeń i spełnieniem ograniczeń nierównościowych a posteriori. Dla wszystkich rozważanych algorytmów przeprowadzono kompleksową analizę symulacyjną sterowania manipulatorem z napędem bezpośrednim, przy dwóch rodzajach zakłócenia: zewnętrznym i parametrycznym. Wyniki porównano z uzyskanymi dla znanego algorytmu CTC-PID (CTC - Computer Torque Control), uzyskując lepszą jakość regulacji algorytmami MPC. Zbadano wpływ długości okresu próbkowania i obliczeniowego opóźnienia sterowania na jakość regulacji, co jest istotne dla algorytmów z szybkim próbkowaniem opartych na modelach.
The subject of the article are predictive control algorithms (of MPC type - Model Predictive Control) for rigid manipulator arms. MPC with a state-space model and with the latest disturbance and modeling error suppression technique was applied, which avoids dynamic disturbance modeling or resorting to additional disturbance cancellation techniques, such as SMC. First of all, the most computationally efficient MPC-NPL (Nonlinear Prediction and Linearization) algorithms are considered, in two versions: the first with constrained QP (Quadratic Programming) optimization and the second with explicit (analytical) optimization without constraints and satisfying a posteriori inequality constraints. For all considered algorithms, a comprehensive simulation analysis was carried out for a direct drive manipulator, with two kinds of disturbances: external and parametric. The obtained results were compared with those for the well-known CTC-PID algorithm (CTC - Computer Torque Control), showing better control quality with MPC algorithms. In addition, the influence of the length of the sampling period and of the computational delay on control quality was investigated, which is important for model-based algorithms with fast sampling.
Źródło:
Pomiary Automatyka Robotyka; 2023, 27, 2; 47--58
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A numerically efficient fuzzy MPC algorithm with fast generation of the control signal
Autorzy:
Marusak, Piotr M.
Powiązania:
https://bibliotekanauki.pl/articles/1838187.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model predictive control
fuzzy system
fuzzy control
nonlinear control
sterowanie predykcyjne
system rozmyty
sterowanie rozmyte
sterowanie nieliniowe
Opis:
Model predictive control (MPC) algorithms are widely used in practical applications. They are usually formulated as optimization problems. If a model used for prediction is linear (or linearized on-line), then the optimization problem is a standard, i.e., quadratic, one. Otherwise, it is a nonlinear, in general, nonconvex optimization problem. In the latter case, numerical problems may occur during solving this problem, and the time needed to calculate control signals cannot be determined. Therefore, approaches based on linear or linearized models are preferred in practical applications. A novel, fuzzy, numerically efficient MPC algorithm is proposed in the paper. It can offer better performance than the algorithms based on linear models, and very close to that of the algorithms based on nonlinear optimization. Its main advantage is the short time needed to calculate the control value at each sampling instant compared with optimization-based numerical algorithms; it is a combination of analytical and numerical versions of MPC algorithms. The efficiency of the proposed approach is demonstrated using control systems of two nonlinear control plants: the first one is a chemical CSTR reactor with a van de Vusse reaction, and the second one is a pH reactor.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 1; 59-71
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Suboptimal Nonlinear Predictive Controllers
Autorzy:
Declercq, F.
De Keyser, R.
Powiązania:
https://bibliotekanauki.pl/articles/908312.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
sterowanie nieliniowe
programowanie sekwencyjne
równanie diofantyczne
predictive control
nonlinear control
sequential quadratic programming
diophantine equations
Opis:
Predictive control based on linear models has become a mature technology in the last decade. Many successful real-time applications can be found in almost every sector of industry. Nonlinear predictive control can further increase the performance of this easy-to-understand control strategy. One of the main problems of implementing nonlinear predictive control is the computational aspect, which is of most importance in real-life applications. In this paper, suboptimal nonlinear predictive control strategies are proposed and compared. The nonlinear predictors are built based on neural identification methods or by white modelling. The use of diophantine equations, which is a common technique to calculate the optimal contribution of the noise model, is avoided by using a more natural method. The comparison between the control algorithms is made based on a simulated discrete multivariable nonlinear system and a continuous stirred tank reactor.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 1; 129-148
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sub-Optimal Nonlinear Predictive and Adaptive Control Based on the Parametric Volterra Model
Autorzy:
Haber, R.
Bars, R.
Lengyel, O.
Powiązania:
https://bibliotekanauki.pl/articles/908307.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
sterowanie nieliniowe
sterowanie optymalne
układ nieliniowy
adaptacyjny układ sterowania
predictive control
nonlinear control
optimal control
nonlinear systems
adaptive control
Opis:
Predictive control algorithms have been worked out mainly to control linear plants. There is a great demand to apply different control ideas to nonlinear systems. Using predictive control algorithms for nonlinear systems is a promising technique. Extended horizon one-step-ahead and long-range optimal predictive control algorithms are given here for the parametric Volterra model (which includes also the generalized Hammerstein model). A quadratic cost function is minimized which considers the quadratic deviations of the reference signal and the output signal at a future point (or points) beyond the dead time and also penalizes large control signal increments. For prediction of the output signal, a predictive model is applied which uses information about the input and output signals up to the current time. A predictive transformation of the nonlinear dynamic model is given. The incremental model is advantageous since the cost function contains the control increment and not the control signal itself. An incremental transformation of the predictive forms is also described. Sub-optimal solutions to the optimal control algorithms are discussed with different assumptions for the control signal during the control horizon. The effect of the different strategies and the effect of the tuning parameters is investigated through simulation examples.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 1; 161-173
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supervisory predictive control and on-line set-point optimization
Autorzy:
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/929583.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
sterowanie nieliniowe
linearyzacja
model niepewności
sterowność wymuszona
optymalizacja
predictive control
nonlinear control
linearisation
model uncertainty
constrained control
set-point optimization
Opis:
The subject of this paper is to discuss selected effective known and novel structures for advanced process control and optimization. The role and techniques of model-based predictive control (MPC) in a supervisory (advanced) control layer are first shortly discussed. The emphasis is put on algorithm efficiency for nonlinear processes and on treating uncertainty in process models, with two solutions presented: the structure of nonlinear prediction and successive linearizations for nonlinear control, and a novel algorithm based on fast model selection to cope with process uncertainty. Issues of cooperation between MPC algorithms and on-line steady-state set-point optimization are next discussed, including integrated approaches. Finally, a recently developed two-purpose supervisory predictive set-point optimizer is discussed, designed to perform simultaneously two goals: economic optimization and constraints handling for the underlying unconstrained direct controllers.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 3; 483-495
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sterowanie kolumną rektyfikacyjną z wykorzystaniem nieliniowego algorytmu predykcyjnego
Control of distillation column using nonlinear predictive algorithm
Autorzy:
Łapiński, M.
Piotrowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/157281.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
modelowanie matematyczne
systemy dynamiczne
systemy nieliniowe
sterowanie predykcyjne
kolumna rektyfikacyjna
mathematical modeling
dynamic systems
nonlinear systems
predictive control
distillation column
Opis:
Popularną metodą rozdziału ciekłych mieszanin wieloskładnikowych jest rektyfikacja, stosowana w różnych gałęziach przemysłu. W artykule rozważana jest mieszanina etanol-woda. Przedstawiono powszechnie stosowany nieliniowy model dwuskładnikowej kolumny rektyfikacyjnej, dokonano jego dyskretyzacji i zaimplementowano w środowisku MATLAB/Simulink. Następnie zaprojektowano układ sterowania wykorzystując nieliniowy algorytm predykcyjny. W badaniach symulacyjnych przeanalizowano wpływ zmian parametrów algorytmu sterowania i zakłóceń na jakość sterowania.
Distillation is the most common unit operation in different branches (e.g. petrochemical, chemical, paper, food and pharmaceutical) of industry. A two product (ethanol-water) distillation process is considered in the paper. There is presented a widely used model of two product distillation column [5]. Next, a nonlinear predictive algorithm is designed. The model predictive technology has achieved a strong position in the industrial process control. The proposed control system is validated by simulations in MATLAB/Simulink environment. The influence of control parameters and disturbances is analysed. The paper is organized as follows. Section 1 contains an introduction to the issues of this paper. The distillation column is described in Section 2. Section 3 presents the dynamical nonlinear model of a distillation column. The nonlinear predictive algorithm is designed in the next section. The simulation results and analysis are presented in Section 5. Finally, the conclusions are drawn.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 8, 8; 745-749
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizujące sterowanie układem napędowym samochodu z silnikiem spalinowym
The optimized control of a propulsion system of an internal combustion engine car
Autorzy:
Strojny, R.
Piotrowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/155219.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
modelowanie matematyczne
systemy dynamiczne
systemy nieliniowe
sterowanie predykcyjne
układ napędowy samochodu
mathematical modeling
dynamic systems
nonlinear systems
predictive control
car propulsion system
Opis:
Sterowanie układami napędowymi nowoczesnych samochodów to prężnie rozwijająca się dziedzina inżynierii. Wzrost wymagań względem ekologii, ekonomii i bezpieczeństwa osób wymusza poszukiwanie nowych rozwiązań, zarówno technologicznych jak i związanych z automatyzacją procesów. W artykule przedstawiono dynamiczny model układu napędowego samochodu z silnikiem spalinowym o zapłonie iskrowym. Zbudowano układ regulacji prędkości obrotowej oparty na nieliniowym sterowaniu predykcyjnym. W badaniach symulacyjnych przedstawiono wyniki sterowania modelem pojazdu marki Golf III.
Control of propulsion systems of modern cars is a rapidly growing field of engineering. New policies in the terms of ecology, economy and safety of persons forced to search for new solutions, both technological and automation of processes. Both car companies and research centers around the world deal with the designing of appropriate models that can be used to simulate the behavior of vehicles. This paper presents a dynamic model of the propulsion system of a car with an internal combustion engine with spark ignition. It was built for a speed control system based on nonlinear predictive control. The controller is applied to the model of Golf III. The paper is divided into 5 sections. Section 1 contains a short introduction to the issues of this paper. The structure and synthesis of the dynamical nonlinear model of the propulsion system of a Golf III car are dealt with in Section 2. A nonlinear model predictive controller is derived in Section 3. Simulation tests and discussion of the results are presented in Section 4. Section 5 concludes the paper.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 12, 12; 1289-1293
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nieliniowy regulator predykcyjny w sterowaniu instalacją napowietrzającą
Nonlinear model predictive controller for aeration system control
Autorzy:
Piotrowski, R.
Mojsiewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/157322.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
modelowanie matematyczne
systemy dynamiczne
systemy nieliniowe
sterowanie predykcyjne
napowietrzanie
biologiczna oczyszczalnia ścieków
mathematical modelling
dynamic systems
nonlinear systems
predictive control
aeration
biological wastewater treatment
Opis:
Napowietrzanie ścieków to jeden z najważniejszych i najdroższych procesów biologicznego oczyszczania ścieków. Wzrost wymagań związanych ze stopniem oczyszczenia ścieków wymusza poszukiwanie nowych rozwiązań w zakresie technologii oraz w sterowaniu tymi procesami. W artykule zbudowano dynamiczny model instalacji napowietrzającej, a następnie zaprezentowano nowy sposób sterowania tym obiektem. Jako metodę wybrano technologię sterowania predykcyjnego. W badaniach symulacyjnych przedstawiono wyniki sterowania instalacją pracującą w oczyszczalni ścieków w Nowym Dworze Gdańskim.
Aeration is an important and expensive activity that is carried out during wastewater treatment plant operation. New environmental policies and regulations enforce more efficient operation of the wastewater treatment plant. Aeration is used in different kind of plant operations. Biological processes carried out in wastewater treatment plant require the dissolved oxygen concentration to have sufficiently high level to maintain microorganisms in activated sludge. The paper presents design, implementation and simulation of a novel type of nonlinear model predictive controller for aeration system tracking in a wastewater treatment plant. The controller is applied to the wastewater treatment plant in Nowy Dwor Gdanski. The paper is divided into 6 sections. Section 1 contains a short introduction to the issues of this paper. The structure of the wastewater treatment plant in Nowy Dwor Gdanski and the aeration system are described in Section 2. Section 3 presents synthesis of the dynamical nonlinear model of the aeration system. A nonlinear model predictive controller is derived in Section 4. Simulation tests and discussion of the obtained results are described in Section 5. Section 6 concludes the paper.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 3, 3; 253-256
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies