Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Abdul Maulud, Khairul Nizam" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Soil Salinity Monitoring and Quantification Using Modern Techniques
Autorzy:
Al-Khuzaie, Marwah M.
Abdul Maulud, Khairul Nizam
Mohd Taib, Aizat
Powiązania:
https://bibliotekanauki.pl/articles/2202207.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
salinity
GIS
soil salinity indicator
regression model
Opis:
Along with sea-level rise, one of the most detrimental effects of climate change, is salinity leakage, which significantly affects agricultural activities throughout most of the world. This occurrence is becoming increasingly dangerous. The purpose of this study was to use Geographical Information Systems (GIS) to assess the current situation of agricultural lands in the province of Al-Diwaniyah, by employing GIS to document the salt-affected sites and arrive at the most important criteria affecting those lands as well as build an application model for suitability to clarify the affected sites and come up with paper and digital maps. To accomplish this, the study relied on the available data by extrapolating and analyzing remote sensing images using salt equations to analyze the Landsat 8 satellite images, after which these data were subjected to spatial statistical treatment in ArcGIS software. Moreover, 20 samples were taken from ground sampling points and subjected to laboratory analysis to compare and document the results. The research resulted in the creation of an up-to-date database for the locations of salt ratio growth or decrease in the province of Al-Diwaniyah, which can be relied on, starting from and expanding in the future. Land maps, both paper and digital, have been created and can be used and inferred. The findings demonstrated the model’s ability to steadily discriminate among all salinity groups while maintaining consistency with the ground truth data. Each of the four major salinity categories was highlighted. The best-performing indicators were used to build the MLR model, which was then used to anticipate soil salinity. The salt levels may be determined by the MLR combining NDVI and SI-5 with a high correlation value (R2 = 75.29%). Finally, it is shown that by combining spectral indicators with field measurements, it is possible to chart and forecast soil salinity on a large scale.
Źródło:
Journal of Ecological Engineering; 2022, 23, 11; 57--67
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies