Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci Kohonena" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Zastosowanie sieci neuronowych Kohonena w klasyfikacji stanu obiektu
Kohonen Neutral Networks for Object State Classification
Autorzy:
Gibiec, M.
Powiązania:
https://bibliotekanauki.pl/articles/155199.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe Kohonena
Kohonen Neutral Networks
Opis:
W artykule przedstawiono możliwości wykorzystywania sieci neutronowych Kohonena do klasyfikacji stanu. Pokazano poprawne działanie sieci w przypadku danych z dziedziny częstotliwości oraz z dziedziny czasu. Zaprezentowano przykłady zastosowań do klasyfikacji stanu maszyny wirnikowej oraz klasyfikacji stanu procesu realizowanego przez blok energetyczny.
In this paper application of Kohen"s neutral networks for classification of object condition is presented. Network preformance was testd whit frequency and time domain data. Exemples of classification of a rotating machine condition and a state of process realized in power plant are presented.
Źródło:
Pomiary Automatyka Kontrola; 2003, R. 49, nr 5, 5; 11-13
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe Kohonena jako narzędzie w taksonomii paleontologicznej - metodyka oraz zastosowanie na przykładzie późnokredowych belemnitów
Artificial Kohonen neural networks as a tool in paleontological taxonomy - an introduction and application to Late Cretaceous belemnites
Autorzy:
Remin, Z.
Powiązania:
https://bibliotekanauki.pl/articles/2074559.pdf
Data publikacji:
2008
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
paleontologia
sztuczna inteligencja
sieci neuronowe Kohonena
samoorganizujących się sieci Kohonena
klasyfikacja
belemnity
górna kreda
paleontology
artificial intelligence
artificial neural networks
Kohonen neural networks
self-organizing map
classification
belemnites
Upper Cretaceous
Opis:
Artificial neural networks (ANNs), the computer software or systems that are able to "learn" on the basis of previously collected input data sets are proposed here as a new useful tool in paleontological modeling. Initially ANNs were designed to imitate the structure and function of natural neural systems such as the human brain. They are commonly used in many natural researches such as physics, geophysics, chemistry, biology, applied ecology etc. Special emphasis is put on the Kohonen self-organizing mapping algorithm, used in unsupervised networks for ordination purposes. The application of ANNs for paleontology is exemplified by study of Late Cretaceous belemnites. The Kohonen networks objectively subdivided the belemnite material] ~ 750 specimens) into consistent groups that could be treated as monospecific. The possibility of transferring these results to the language of classical statistics is also presented. Further development and possibility of use of ANNs in various areas of paleontology, paleobiology and paleoecology is briefly discussed.
Źródło:
Przegląd Geologiczny; 2008, 56, 1; 58-66
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych Kohonena do prognozowania dobowego poboru wody.
Application of Kohonen Artificial Neural Networks to the Prediction of Daily Water Consumption.
Autorzy:
Licznar, P.
Łomotowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/237690.pdf
Data publikacji:
2006
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
dobowy pobór wody
prognozowanie
sieci neuronowe Kohonena
daily water consumption
prediction
artificial neural networks
perceptron networks
Self-Organizing Feature Map (SOFM)
Opis:
W pracy przedstawiono wyniki badań nad zastosowaniem samoorganizujących sieci Kohonena do prognozowania dobowego poboru wody. Dotychczas do prognozowania poboru wody używano sztucznych sieci neuronowych najprostszych typów, głównie sieci perceptronowych o pojedynczej warstwie ukrytej. Otrzymywano przy tym wyniki porównywalne lub lepsze od modeli stochastycznych opartych o analizę szeregów czasowych, jednakże sieci te nie pozwalały wniknąć w istotę kształtowania się procesu poboru wody. Wagi poszczególnych neuronów sieci perceptronowych, ustalane w trakcie ich uczenia, nie są bowiem powiązane z fizycznymi cechami prognozowanego szeregu czasowego. Z tego względu podjęto próbę zastosowania samoorganizujących sieci Kohonena dla prognozowania dobowego poboru wody w sieci wodociągowej. W badaniach wykorzystano szereg czasowy dobowego zużycia wody z lat 1996-2002 jednego z większych polskich wodociągów. Prognoza była wykonana dwuetapowo. Pierwszym jego etapem było prognozowanie sumarycznego tygodniowego rozbioru wody przy użyciu prostej sieci perceptronowej szeregu czasowego. W następnym etapie prognozowany całkowity, tygodniowy, rozbiór był rozdzielany na poszczególne dni tygodnia, zgodnie z wzorcami rozpoznanymi dla poszczególnych okresów roku przez samoorganizującą się strukturę sieci Kohonena. Otrzymywane wyniki były porównywalne z wcześniejszymi rezultatami autorów, uzyskanymi na tym obiekcie do prognozowania przy wykorzystaniu prostych sieci neuronowych oraz metody wygładzania wykładniczego. Dodatkowym - poznawczym - wynikiem przeprowadzonych badań są opracowane, przy wykorzystaniu sieci samoorganizującej się na zasadzie współzawodnictwa, profile tygodniowego poboru wody.
The objective of the study was to develop a hybrid tool for predicting daily water consumption by the combined use of the perceptron and Kohonen artificial neural networks. The investigations included a 7-year time series of total daily water consumption in the time span of 1996 to 2002, coming from one of Poland's largest water distribution systems. The prediction process was a two-stage one. At the first stage, the Self-Organizing Feature Map (SOFM) was made in order to establish the weekly water distribution patterns that are typical for each season of the year. At the second stage, a simple single hidden layer perceptron networks was built to enable the prediction of total weekly water consumption. Owing to the combined use of the perceptron and Kohonen artificial neural networks it was possible to work out high-quality daily water consumption predictions and to identify typical seasonal patterns of weekly water consumption.
Źródło:
Ochrona Środowiska; 2006, R. 28, nr 1, 1; 45-48
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies