Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sobolewski, Ł." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Wpływ doboru parametrów sieci neuronowej GMDH na wyniki prognozy poprawek dla krajowej skali czasu UTC(PL)
Influence of selection of GMDH neural network parameters on predicted corrections of the national time scale UTC(PL)
Autorzy:
Sobolewski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/154427.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe GMDH
polska skala czasu UTC(PL)
zegar atomowy
GMDH neural network
national timescale UTC(PL)
atomic clock
Opis:
W pracy omówiono wyniki badań dotyczących prognozowania poprawek dla krajowej skali czasu UTC(PL), z wykorzystaniem sztucznych sieci neuronowych GMDH. Przedstawiono wyniki badań, których celem było sprawdzenie, jak dobór funkcji przejścia neuronu sieci GMDH oraz stosunku danych uczących do danych testujących wpływają na wynik prognozy. Opisano wyniki prognozowania poprawek otrzymane na podstawie przeprowadzonych badań, uzyskane na 15 dzień dla 28 kolejnych miesięcy, począwszy od stycznia 2008 roku (MJD 54479) do kwietnia 2010 roku (MJD 55299).
The paper discusses the results of predicting the corrections for the national time scale UTC(PL), using GMDH neural networks. The aim of the research was to examine the influence of the GMDH neural network parameters, ie. the transfer function of the neuron and the ratio of training to test data on the prediction result. The first section describes the national time scale UTC(PL), and presents the problem of maintaining the best compatibility of the UTC(PL) with UTC. It also presents the method for predicting the corrections used in the GUM as well as a new method for predicting the corrections for the UTC(PL) based on GMDH neural network. The second section shows how the input data for the GMDH neural network was prepared. Based on historical measurement data from the cesium atomic clock Cs2 and corrections of the UTC(PL) relative to UTC, two time series (sc1 and sc2) were prepared. They were the basis for determining the input to the GMDH neural network. The third section describes the basic idea and principle of operation of GMDH neural networks, which belong to the group of self-organizing networks. In the fourth section there is presented the method for predicting the corrections using GMDH neural networks and there are given the research results. There were carried out investigations whose aim was to examine the influence of the transfer function of the neuron and the ratio of training to test data on the prediction result. Based on those investigations the prediction of the corrections on the 15th day of 28 consecutive months was performed. The research show that the GMDH neural networks can be used for predicting the corrections for the national time scale UTC(PL). The obtained prediction errors are significantly smaller than those obtained from the analytical linear regression method used in the GUM. It is shown that a significant influence on obtaining small prediction errors has a proper selection of the GMDH neural network parameters.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 10, 10; 869-871
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie metod prognozowania zastosowanych w sieci neuronowej GMDH przeznaczonej do wyznaczania prognozy poprawek dla krajowej skali czasu UTC(PL)
Comparison of predicting methods used in GMDH neural network for determining the correction prediction for the national timescale UTC(PL)
Autorzy:
Sobolewski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/158497.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe GMDH
polska skala czasu UTC(PL)
zegar atomowy
GMDH neural network
national timescale UTC(PL)
atomic clock
Opis:
W pracy zostały porównane metody prognozowania poprawek dla krajowej skali czasu UTC(PL). Badania dotyczące prognozowania poprawek prowadzono w oparciu o sieci neuronowe GMDH dwoma metodami, metodą analizy szeregów czasowych i metodą regresji. Prognozowanie poprawek zostało wykonane na 15 dzień miesiąca dla 20 kolejnych miesięcy. Otrzymane wyniki prognoz przy użyciu sieci neuronowej GMDH zestawione z wynikami prognoz otrzymanymi przez Główny Urząd Miar z zastosowaniem metody regresji liniowej pokazują, że lepszą metodą prognozowania poprawek dla krajowej skali czasu okazała się metoda analizy szeregów czasowych.
The paper discusses the results of predicting the corrections for the national time scale UTC(PL), using GMDH neural networks. The aim of the research was to examine the influence of the GMDH neural network prediction methods on the prediction result. The first section describes the national time scale UTC(PL) and presents the problem of maintaining the best compatibility of the UTC(PL) with UTC. It also presents the method of predicting the corrections used in the Central Office of Measures (GUM), and a new method for predicting the corrections for the UTC(PL) based on GMDH neural network. The second section shows how the input data for the GMDH neural network was prepared. Based on historical measurement data from the cesium atomic clock Cs2 and corrections of the UTC(PL) relative to UTC, two time series (sc1 and sc2) which were the basis for determining the input to GMDH neural network were prepared. The third section describes the predicting methods used in the GMDH neural network and a training data for both methods. The fourth section focuses on the method of predicting the corrections using GMDH neural networks, and contains the research results. The research on predicting the corrections were carried out using two methods, the time series analysis and the regression method. Prediction of the corrections was made on the 15th day of month for 20 consecutive months. The prediction results using the GMDH neural network were compared with the results received by the GUM with use of the linear regression method. The research show that the GMDH neural networks can be used to predict the corrections for the national time scale UTC(PL). A better method of predicting the corrections for the national time scale proved to be the method of time series analysis. The results were better than the prediction results obtained in the GUM for both time series sc1 and sc2. In the case of using the regression method only for times series sc1, the obtained results were better than those obtained in the GUM.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 1, 1; 23-25
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting the Lithuanian Timescale UTC(LT) by means of GMDH neural network
Prognozowanie Litewskiej Skali Czasu UTC(LT) z zastosowaniem sieci neuronowej typu GMDH
Autorzy:
Sobolewski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/211148.pdf
Data publikacji:
2017
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
electrical engineering
UTC(k) timescale
atomic clock
predicting [UTC-UTC(k)]
GMDH neural network
elektrotechnika
skala czasu UTC(k)
zegar atomowy
prognozowanie [UTC-UTC(k)]
sieci neuronowe GMDH
Opis:
The aim of the study is to examine the effectiveness of applying GMDH-type neural network and the developed procedure for predicting UTC(k) timescales, which are characterized with high dynamics of changes of the input data. The research is carried out on the example of the Lithuanian Timescale UTC(LT). The obtained research results have shown that GMDH-type neural network with a developed predicting procedure enables us to receive good prediction results for the UTC(LT). Better prediction quality was obtained using time series which are built only on the basis of deviations determined by the BIPM according to the UTC and UTC Rapid scales.
Celem przeprowadzonych badań było sprawdzenie skuteczności zastosowania sieci neuronowej typu GMDH i opracowanej procedury do prognozowania skal czasu UTC(k), charakteryzujących się dużą dynamiką zmian danych wejściowych. Badania przeprowadzono na przykładzie Litewskiej Skali Czasu UTC(LT). Otrzymane wyniki badań pokazały, że sieci neuronowe typu GMDH z opracowaną procedurą prognozowania umożliwiają osiągnięcie dobrych wyników prognoz dla UTC(LT). Lepszą jakość prognozowania odchyleń [UTC – UTC(LT)] uzyskano przy zastosowaniu szeregu czasowego, który zbudowany jest wyłącznie na podstawie odchyleń wyznaczonych przez BIPM w oparciu o skalę UTC i UTC Rapid.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2017, 66, 4; 31-41
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies