Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci nn" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A statistical approach for off-line signature verification (SV)
Autorzy:
Das, M.T.
Dulger, L.C.
Dulger, H.E.
Powiązania:
https://bibliotekanauki.pl/articles/332991.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
weryfikacja podpisu
sieci neuronowe
offline signature verification (SV)
particle swarm optimization (PSO)
neural networks (NN)
chi-square test
PSO-NN
Opis:
This paper includes off line Signature Verification (SV) process with test results using the proposed algorithm Particle Swarm Optimization-Neural Network (PSO-NN) together with statistical analysis, Chi-square test. The verification process is performed in four steps. Signature images are scanned (data acquisition) and image processing is applied to make images suitable for extracting features (pre-processing). Each pre-processed image is then used to extract relevant geometric parameters (feature extraction) that can distinguish signatures of different volunteers. Finally, the proposed verification algorithm is tested on the database that includes 1350 skilled and genuine signatures taken from 25 volunteers. The Chi-square test is applied to see how the signature data fits with probability test function.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 33-39
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of gestational age on neural networks interpretation of fetal monitoring signals
Autorzy:
Jeżewski, M.
Czabański, R.
Horoba, K.
Wróbel, J.
Łęski, J.
Jeżewski, J.
Powiązania:
https://bibliotekanauki.pl/articles/333505.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
monitoring płodu
kardiotokografia
klasyfikacja
sieci neuronowe
fetal monitoring
cardiotocography
classification
neural networks (NN)
Opis:
Cardiotocographic monitoring (CTG) is a primary biophysical monitoring method for assessment of the fetal state and is based on analysis of fetal heart rate, uterine contraction activity and fetal movement signals. Visual analysis of CTG traces is very difficult so computer-aided fetal monitoring systems have become a standard in clinical centres. We proposed the application of neural networks for the prediction of fetal outcome using the parameters of quantitative description of acquired signals as inputs. We focused on the influence of the gestational age (during trace recording) on the fetal outcome classification quality. We designed MLP and RBF neural networks with changing the number of neurons in the hidden layer to find the best structure. Networks were trained and tested fifty times, with random cases assignment to training, validating and testing subset. We obtained the value of sensitivity index above 0.7, what may be regarded as good result. However additional trace grouping within similar gestational age, increased classification quality in the case of MLP networks.
Źródło:
Journal of Medical Informatics & Technologies; 2008, 12; 137-142
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies