Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SOM" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Sztuczne sieci neuronowe ANN : sieci Kohonena
Artificial neural networks (ANN) : Kohonen networks
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131981.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
Sieci Kohonena
sieci neuronowe
mapa samoorganizująca
SOM
WEBSOM
Kohonen networks
artificial neural networks
ANN
Self Organizing Map
Opis:
Artykuł omawia sztuczne sieci neuronowe (ang. ANN- Artificial neural networks). Jedną z odmian są sieci Kohonena zwane Mapą Samoorganizującą (ang. SOM – Self Organizing Map) realizują one proces uczenia się sieci neuronowych samodzielnie tzn. rozpoznają relacje występujące w skupieniach poprzez wykrycie wewnętrznej struktury i kategoryzują je w procesie samouczenia. SOM służy do uformowania odwzorowania z przestrzeni wielowymiarowej do przestrzeni jednowymiarowej lub dwuwymiarowej. Główną cechą SOM jest to, że tworzy on nieliniową projekcję wielowymiarową kolektora danych na regularnej, niskowymiarowej (zwykle 2D) sieci. Na wyświetlaczu klastrowanie przestrzeni danych, jak również relacje metryczno-topologiczne elementów danych, są wyraźnie widoczne. Jeśli elementy danych są wektorami, składniki, których są zmiennymi z określone znaczenie, takie jak deskryptory danych statystycznych lub pomiary, które opisują proces, siatka SOM może być wykorzystana, jako podstawa, na której może znajdować się każda zmienna wyświetlane osobno przy użyciu kodowania na poziomie szarości lub pseudo koloru. Ten rodzaj projekcji został uznany za bardzo przydatny do zrozumienia wzajemnych zależności między zmiennymi, a także strukturami zbioru danych.
The article discusses artificial neural networks (ANN). One of the varieties is the Kohonen network, called the Self Organizing Map (SOM), that perform the learning process of neural networks independently, i.e. they recognize relationships occurring in clusters by detecting an internal structure and categorizing them in the process of self-learning. SOM is used to form mapping from a multidimensional space to a one-dimensional or two-dimensional space. The main feature of SOM is that it creates a non-linear multi-dimensional projection of a data collector on a regular, low-dimensional (usually 2D) network. On the display, data space clustering as well as metric-topological relations of data elements are clearly visible. If the data elements are vectors, the components of which are variables with defined meanings, such as statistical data descriptors or measurements that describe the process, the SOM grid can be used as a basis on which each variable can be displayed separately using gray or pseudo-color coding. This type of projection has been found to be very useful for understanding the interrelationships between variables as well as data set structures.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 34-39
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja mikroskopowych obrazów skał przy wykorzystaniu sieci neuronowych
Classification of the microscopic images of rocks with the use of neural networks
Autorzy:
Młynarczuk, M.
Bielecka, M.
Ślipek, B.
Powiązania:
https://bibliotekanauki.pl/articles/394187.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
automatyczna klasyfikacja skał
obrazy mikroskopowe
sieci neuronowe
sztuczna inteligencja
SOM
MLP
LVQ
automatic classification of rocks
microscopic images
neural networks
artificial intelligence
Opis:
Klasyfikacja skał stanowi ważny aspekt w wielu zagadnieniach górnictwa i geologii inżynierskiej. Automatyzacja procesu klasyfikacji mikroskopowych obrazów skał może przyczynić się do usprawniania przetwarzania ogromnych zbiorów fotografii skał, poprzez jego przyspieszenie i wyeliminowanie wpływu subiektywnej oceny obserwatora na końcowy wynik klasyfikacji. Podczas pierwszego etapu badan opisanych w tym artykule wykorzystano zbiór 2700 mikroskopowych obrazów szlifów cienkich 9 skał, różniących się od siebie cechami petrograficznymi. Próbki skał zostały opisane 13-wymiarowym wektorem cech. Przy użyciu trzech różnych sieci neuronowych: dwuwarstwowej sieci jednokierunkowej (multi-layer feed-forward perceptron, MLP), samoorganizującej mapy Kohonena (self organizing Kohonen maps, SOM) oraz kwantyzacji wektorowej (learning vector quantization, LVQ), fotografie, po wcześniejszym treningu sieci odseparowanymi podzbiorami próbek, zostały poddane procesowi automatycznej klasyfikacji. Stukrotne powtarzanie losowania podzbiorów wykorzystywanych do treningu sieci oraz powtarzanie algorytmu uczenia sieci i rozpoznawania zdjęć pozwoliło na uzyskanie statystycznie wiarygodnych wyników, których wartość średnia wyniosła 99,4%. Następnie zbiór skał został zwiększony do łącznej wielkości 6300 zdjęć reprezentujących 21 różnych skał, a badania zostały powtórzone z zachowanie wektora cech oraz parametrów nauki sieci. Wynik średni poprawnych klasyfikacji dla powiększonego zbioru obrazów wyniósł 98,30%.
Rock classification is an inherent part of numerous aspects of geology and engineering geology. Automating the classification of the microscopic images of rocks may result in improvements in analyzing vast sets of rocks' images by speeding up their recognition and eliminating the influence of the observer's subjective judgment in the final classification results. A set of 2,700 microscopic images of thin sections of 9 rocks, which differ in petrographic features, was used during the first step of the study described in the following article. Samples were displayed in a thirteen-dimensional feature space. With the use of three different neural networks multi-layer feed-forward perceptron (MLP), self-organizing Kohonen maps (SOM), and learning vector quantization (LVQ) ? images were subjected to an automated classification process preceded by the network's training with the use of isolated subset samples. Centuple repetition of subset drawings, which were used to train the network by repeating the self-learning network and images recognition algorithm, led to the achievement of statistically trustworthy results with a mean at the level of 99.4 %, and for the best drawing at 99.71%. Afterwards, the rocks set was extended to a total volume of 6,300 images of 21 different rocks, and the test was repeated preserving the feature space and self-learning network parameters. The average score of correct classifications for the extended images set was 98.30%, with the best score at 98.95%.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2014, 86; 27-38
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie procesu osiadania terenu górniczego Kopalni Węgla Brunatnego Bełchatów - nowe podejście
Land subsidence modeling in mining area of open pit Brown Coal Mine Bełchatów - a new approach
Autorzy:
Palmąka, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074851.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Bełchatów
GIS
geostatystyka
interpolacja
modele liniowe
modele nieliniowe
osiadanie terenu
Sammon's mapping
mapy samoorganizujące się
SOM
sieci neuronowe
regresja liniowa
geostatistics
interpolation
linear models
land subsidence
self-organizing map
neural networks
multiple linear regression
Opis:
From the beginning of open-pit mining works (i.e. ground massive dewatering, access excavation, cover dumping) in 1976, which were strictly connected with an exposure a brown coal beds on Bełchatów field it was noticed, that a land surface subsided in the vicinity of Brown Coal Mine Bełchatów. Quantitative land subsidence assessments, which are based on deterministic models (elastic ground model, consolidation model), are not efficient enough to simulate the process – adjusted coefficient of determination amounts R2kor2kor
Źródło:
Przegląd Geologiczny; 2011, 59; 245-250
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies