Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci neuronowe rozmyte" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Porównanie systemów rozmytych i sztucznych sieci neuronowych
Comparison of fuzzy logic systems and artifical neural networks
Autorzy:
Charlak, M.
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/395144.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe
systemy rozmyte i sztuczne
Opis:
W pracy opisano podstawowe pojęcia dotyczące podstawowego modelu matematycznego systemów neurorozmytych potraktowanych jako tzw. „czarna skrzynka” oraz różnych jego wersji. W skrócie przedstawiono wybrane kierunki badań dotyczących fuzji obu technologii. Praca zawiera elementarny opis nowej klasy systemów tzw. inteligencji obliczeniowej.
In this article we short describe fundamental mathematical model of neuro-fuzzy system treat as ‘black box’ known in cybernetic and various version of this fundamental model. Short we characterize some direction in the research about fusion two technology: fuzzy systems and artificial neural systems. In our article we short describe elementary notion: new technology: computational intelligence.
Źródło:
Postępy Nauki i Techniki; 2010, 4; 54-64
2080-4075
Pojawia się w:
Postępy Nauki i Techniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid neuro-fuzzy classifier based on NEFCLASS model
Hybrydowy neuronowo-rozmyty klasyfikator oparty na modelu NEFCLASS
Autorzy:
Gliwa, B.
Byrski, A.
Powiązania:
https://bibliotekanauki.pl/articles/305407.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
klasyfikatory neuronowo-rozmyte
NEFCLASS
sieci neuronowe
systemy rozmyte
neuro-fuzzy classifier
neural networks
fuzzy systems
Opis:
The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which was modified. The presented classifier was compared to popular classifiers - neural networks and k-nearest neighbours. Efficiency of modifications in classifier was compared with methods used in original model NEFCLASS (learning methods). Accuracy of classifier was tested using 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wis-consin. Moreover, influence of ensemble classification methods on classification accuracy was presented.
Artykuł przedstawia zasadę działania oraz wyniki badań eksperymentalnych klasyfikatora opartego na hybrydzie sieci neuronowej z logiką rozmytą, bazujący na modelu NEFCLASS. Prezentacja struktury i działania klasyfikatora została zilustrowana wynikami eksperymentów porównawczych przeprowadzonych dla popularnych klasyfikatorów, takich jak perceptron wielowarstwowy k najbliższych sąsiadów. Skuteczność wprowadzonych modyfikacji do klasyfikatora została porównana z metodami używanymi w oryginalnym modelu NEFCLASS (metody uczenia). Jako dane benchmarkowe posłużyły wybrane bazy danych z UCI Machine Learning Repository (iris, wine, breast cancer wisconsin). Zaprezentowano również wpływ użycia metod klasyfikacji zbiorczej na efektywność klasyfikacji.
Źródło:
Computer Science; 2011, 12; 115-135
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Decision support for hardware and software, complex for precision farming tasks: student project
Autorzy:
Ganchenko, V. V
Powiązania:
https://bibliotekanauki.pl/articles/397759.pdf
Data publikacji:
2014
Wydawca:
Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
Tematy:
image processing
agricultural field
fuzzy clustering
neural network
recognition
przetwarzanie obrazów
pole uprawne
grupowanie rozmyte
sieci neuronowe
rozpoznawanie obrazów
Opis:
In the article algorithms for decision support for hardware and software complex are described. The complex is used for few precision farming tasks: data mining, data processing, decision making and control of fertilizers applying. The complex is designed to reduce costs and environmental burden on potato. The complex is based on processing aerial images photographs of potato fields.
Źródło:
International Journal of Microelectronics and Computer Science; 2014, 5, 1; 5-13
2080-8755
2353-9607
Pojawia się w:
International Journal of Microelectronics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O doborze reguł sterowania dla regulatora rozmytego
About collecting of control for a fuzzy logic controller
Autorzy:
Wiktorowicz, K.
Zajdel, R.
Powiązania:
https://bibliotekanauki.pl/articles/156306.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sterowanie rozmyte
sieci neuronowe
uczenie ze wzmocnieniem
fuzzy control
neural networks
reinforcement learning
stability
quality
Opis:
W pracy scharakteryzowano problem doboru reguł sterowania dla regulatora rozmytego. Omówiono metody pozyskiwania reguł za pomocą sieci neuronowej uczonej metodą z nauczycielem i ze wzmocnieniem. Przedstawiono zagadnienie badania stabilności i jakości zaprojektowanego układu. Omawiane problemy zilustrowano przykładowymi wynikami badań.
In the paper the problem of collecting of control rules a fuzzy logic controller is characterised. Two methods of generating of rules using neural network are described: supervised learning and reinforcement learning. the problem of stability and quality analysis is presented. The considerations are illustrated by examples.
Źródło:
Pomiary Automatyka Kontrola; 2005, R. 51, nr 1, 1; 44-46
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod fuzji danych w zarządzaniu zasobami radaru wielofunkcyjnego
The Application of the Data Fusion Methods in the Multifunction Radar Resources Management
Autorzy:
Komorniczak, W.
Kawalec, A.
Pietrasiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/210695.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
radar wielofunkcyjny
fuzja danych
sieci neuronowe
systemy rozmyte
multifunction radar
data fusion
neural networks
fuzzy logic
Opis:
W referacie poruszono tematykę związaną z zarządzaniem zasobami radaru wielofunkcyjnego. Jako jeden z elementów tego procesu wyróżniono priorytetyzację (rangowanie) zadań realizowanych przez radar. Rangowanie jest wymuszone przez potencjalnie niedostateczne zasoby wymagane do realizacji wszystkich zadań radaru, stąd konieczność szeregowania obsługiwanych przezeń obiektów zgodnie z ich istotnością. W referacie scharakteryzowano dane źródłowe zasilające proces rangowania oraz przedstawiono algorytmy przetwarzania tych danych. Zaprezentowane algorytmy oparto na wybranych metodach fuzji danych. Przedstawiono przebieg i wyniki badań procesu rangowania oraz wyniki badań wpływu zastosowania rangowania na niektóre parametry zarządzania zasobami radaru wielofunkcyjnego.
The paper deals with the problem of the multifunction radar resources management (RRM). The objectives of RRM are: optimal (from the radar performance point of view) resources allocation and the device operation control. As a result of RRM, it is expected a matrix containing information for the execution systems: " what, when, and how to do. The main constraints to deal with in the radar work are: time and energy limitations. If it is enough resource to execute all the tasks, the tasks execution is feasible. But in real situation one should not expect such a comfort. Typically neither time nor energy is enough and the questions arises what to do in these circumstances. It is obvious that only selected tasks can be executed, the RRM should answer which of them and in what order. To answer these questions, the structure of the RRM was proposed. First of all it is necessary to rank the tasks in order of their priorities, then to select the most important of them and schedule their execution. RRM is decomposed into two sub-problems, e.g.: ranking and task scheduling. The ranking belongs to the identification problems class, while the scheduling can be treated as an optimization task. The paper presents the data fusion approach to the task ranking. There are numerous examples of utilization of the data fusion tools in order to solve the identification problems. The conclusions from these examples can be following: the neural networks which have the ability to learn from the presented examples have also disadvantage of impossibility of extraction of the gathered knowledge. The internal processes of reasoning are neither well described nor studied, so they are not a good tool for military application, which the multifunction radar is. Fuzzy logic systems (based on the fuzzy sets theory and fuzzy logic) have the advantage of good and clear knowledge representation and ability to relatively easy implementation of the expert knowledge. The good side of the fuzzy systems is their possibility of maintaining and fusion of the imperfect knowledge. The disadvantage is the lack of ability to learn whole the knowledge from the examples. Some hybrid solutions are necessary. Four solutions are presented in the paper: neural, fuzzy, fuzzy — neural and probabilistic — fuzzy. In order to implement data fusion tools, the base test platform was designed and implemented. In fact, the test platform is a complex process of multifunction radar resources management, as well as it deals with the task scheduling problem. In order to evaluate the algorithms presented in the paper, some factors of radar work performance were defined. Presented ranking algorithms have capability of learning with use of the registered data learning set. Algorithms with their knowledge bases were tested and compared. The conclusion is following: the use of ranking process gives approximately two times better performance in task removal/delay aspect. On the other hand, the quality of algorithm (its accuracy) has lower influence on the final result. It means that for the use in radar application the algorithm with the best convergence during learning process and stability should be recommended. It is also important that the algorithm should have clear knowledge representation. These requirements meet two of the presented algorithms: neural - fuzzy and probabilistic - fuzzy. The first one was used against the positional data, the second one gave the best results for identification data. It is important, that overall performance of the presented RRM and ranking algorithms was tested with the use of real registered data, what makes it very interesting from the application point of view.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2006, 55, 1; 55-75
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka torów pomiarowych i urządzenia wykonawczego w układzie regulacji turbiny kondensacyjnej
Diagnostic of measuring tracks and executive device in control system for condensing turbine
Autorzy:
Pawlak, M.
Powiązania:
https://bibliotekanauki.pl/articles/155014.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
układ regulacji
modelowanie rozmyte
sieci neuronowe
diagnostyka
tory pomiarowe
elementy wykonawcze
fault diagnosis
power control
power generation
turbines
fuzzy modeling
fault tolerant systems
Opis:
Przedstawiono układ regulacji turbiny kondensacyjnej odporny na uszkodzenia torów pomiarowych. Opisano działania układu regulacji turbiny kondensacyjnej pracującej w układzie blokowym. Zaprezentowano charakterystykę sygnałów wchodzących do regulatora i metody wykrywania uszkodzeń dla danego toru pomiarowego. Opisano zasadę działania i system diagnostyki dla urządzenia wykonawczego
In this paper described fault tolerant system of regulation of condensing turbine on damages of measuring - tracks. One presented characterization of signals entering to controler and methods of detecting of damages measuring - track and executive device.
Źródło:
Pomiary Automatyka Kontrola; 2006, R. 52, nr 11, 11; 48-50
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational intelligence methods in the problem of modelling technical wear of buildings in mining areas
Metody inteligencji obliczeniowej w problemie modelowania stopnia zużycia technicznego budynków na terenach górniczych
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385956.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
technical wear
neural networks
support vector machine (SVM)
fuzzy systems
szkody górnicze
zużycie techniczne
sieci neuronowe
systemy rozmyte
Opis:
In the work presented approach with a view to building the model of degree of technical wear of buildings in the mining areas, as well as an indication that the contribution of the consumption on technical factors interact mining and civil construction origin. Set out criteria for the selection and research methodology effects are synthetically summarised existing work in this field. Justified choice of the ϵ-SVR method confronting its advantages to the characteristics of typical neural network.
W artykule zaprezentowano podejście mające na celu budowę modelu przebiegu stopnia zużycia technicznego budynków na terenach górniczych, jak również analizowano, w jakim stopniu na zużycie techniczne oddziałują czynniki górnicze oraz ogólnobudowlane. Przedstawiono kryteria doboru metodyki badań oraz podsumowano efekty dotychczasowych prac w tej dziedzinie. Uzasadniono wybór metody &vepsilon;-SVR, konfrontując jej zalety z własnościami typowych, jednokierunkowych sieci neuronowych. Opisano sposób optymalnego doboru parametrów charakteryzujących złożoność modelu ϵ-SVR oraz wskazano możliwość zastosowania tak utworzonego modelu w systemach ekspertowych.
Źródło:
Geomatics and Environmental Engineering; 2012, 6, 3; 83-91
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies