Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "konwolucyjna sieć neuronowa" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Denseformer for single image deraining
Autorzy:
Wang, Tianming
Wang, Kaige
Li, Qing
Powiązania:
https://bibliotekanauki.pl/articles/24987759.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
artificial intelligence
convolutional neural network
image deraining
sztuczna inteligencja
sieć neuronowa konwolucyjna
obraz pojedynczy
Opis:
Image is one of the most important forms of information expression in multimedia. It is the key factor to determine the visual effect of multimedia software. As an image restoration task, image deraining can effectively restore the original information of the image, which is conducive to the downstream task. In recent years, with the development of deep learning technology, CNN and Transformer structures have shone brightly in computer vision. In this paper, we summarize the key to success of these structures in the past, and on this basis, we introduce the concept of a layer aggregation mechanism to describe how to reuse the information of the previous layer to better extract the features of the current layer. Based on this layer aggregation mechanism, we build the rain removal network called DenseformerNet. Our network strengthens feature promotion and encourages feature reuse, allowing better information and gradient flow. Through a large number of experiments, we prove that our model is efficient and effective, and expect to bring some illumination to the future rain removal network.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 4; 651--661
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Choice of the p-norm for high level classification features pruning in modern convolutional neural networks with local sensitivity analysis
Autorzy:
Jeczmionek, Ernest
Kowalski, Piotr A.
Powiązania:
https://bibliotekanauki.pl/articles/24988509.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
convolutional neural network
pruning
sensitivity analysis
transfer learning
ImageNet
sieć neuronowa konwolucyjna
analiza wrażliwości
uczenie transferowe
Opis:
Transfer learning has surfaced as a compelling technique in machine learning, enabling the transfer of knowledge across networks. This study evaluates the efficacy of ImageNet pretrained state-of-the-art networks, including DenseNet, ResNet, and VGG, in implementing transfer learning for prepruned models on compact datasets, such as FashionMNIST, CIFAR10, and CIFAR100. The primary objective is to reduce the number of neurons while preserving high-level features. To this end, local sensitivity analysis is employed alongside p-norms and various reduction levels. This investigation discovers that VGG16, a network rich in parameters, displays resilience to high-level feature pruning. Conversely, the ResNet architectures reveal an interesting pattern of increased volatility. These observations assist in identifying an optimal combination of the norm and the reduction level for each network architecture, thus offering valuable directions for model-specific optimization. This study marks a significant advance in understanding and implementing effective pruning strategies across diverse network architectures, paving the way for future research and applications.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 4; 663--672
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns
Autorzy:
Bernardo, Lucas Salvador
Damaševičius, Robertas
de Albuquerque, Victor Hugo C.
Maskeliūnas, Rytis
Powiązania:
https://bibliotekanauki.pl/articles/2055162.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Parkinson’s disease
spirography
convolutional neural network
deep learning
choroba Parkinsona
spirografia
sieć neuronowa konwolucyjna
uczenie głębokie
Opis:
Parkinson’s disease (PD) is the second most common neurological disorder in the world. Nowadays, it is estimated that it affects from 2% to 3% of the global population over 65 years old. In clinical environments, a spiral drawing task is performed to help to obtain the disease’s diagnosis. The spiral trajectory differs between people with PD and healthy ones. This paper aims to analyze differences between handmade drawings of PD patients and healthy subjects by applying the SqueezeNet convolutional neural network (CNN) model as a feature extractor, and a support vector machine (SVM) as a classifier. The dataset used for training and testing consists of 514 handwritten draws of Archimedes’ spiral images derived from heterogeneous sources (digital and paper-based), from which 296 correspond to PD patients and 218 to healthy subjects. To extract features using the proposed CNN, a model is trained and 20% of its data is used for testing. Feature extraction results in 512 features, which are used for SVM training and testing, while the performance is compared with that of other machine learning classifiers such as a Gaussian naive Bayes (GNB) classifier (82.61%) and a random forest (RF) (87.38%). The proposed method displays an accuracy of 91.26%, which represents an improvement when compared to pure CNN-based models such as SqueezeNet (85.29%), VGG11 (87.25%), and ResNet (89.22%).
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 549--561
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of low resolution on image recognition with deep neural networks: An experimental study
Autorzy:
Koziarski, M.
Cyganek, B.
Powiązania:
https://bibliotekanauki.pl/articles/330321.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
image recognition
deep neural network
convolutional neural network
low resolution
super resolution
rozpoznawanie obrazu
sieć neuronowa głęboka
sieć neuronowa konwolucyjna
niska rozdzielczość
nadrozdzielczość
Opis:
Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 735-744
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The feature selection problem in computer-assisted cytology
Autorzy:
Kowal, M.
Skobel, M.
Nowicki, N.
Powiązania:
https://bibliotekanauki.pl/articles/329941.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
nuclei segmentation
feature selection
breast cancer
convolutional neural network
segmentacja jądra
selekcja cech
rak piersi
sieć neuronowa konwolucyjna
Opis:
Modern cancer diagnostics is based heavily on cytological examinations. Unfortunately, visual inspection of cytological preparations under the microscope is a tedious and time-consuming process. Moreover, intra- and inter-observer variations in cytological diagnosis are substantial. Cytological diagnostics can be facilitated and objectified by using automatic image analysis and machine learning methods. Computerized systems usually preprocess cytological images, segment and detect nuclei, extract and select features, and finally classify the sample. In spite of the fact that a lot of different computerized methods and systems have already been proposed for cytology, they are still not routinely used because there is a need for improvement in their accuracy. This contribution focuses on computerized breast cancer classification. The task at hand is to classify cellular samples coming from fine-needle biopsy as either benign or malignant. For this purpose, we compare 5 methods of nuclei segmentation and detection, 4 methods of feature selection and 4 methods of classification. Nuclei detection and segmentation methods are compared with respect to recall and the F1 score based on the Jaccard index. Feature selection and classification methods are compared with respect to classification accuracy. Nevertheless, the main contribution of our study is to determine which features of nuclei indicate reliably the type of cancer. We also check whether the quality of nuclei segmentation/detection significantly affects the accuracy of cancer classification. It is verified using the test set that the average accuracy of cancer classification is around 76%. Spearman’s correlation and chi-square test allow us to determine significantly better features than the feature forward selection method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 759-770
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using neural networks and deep learning algorithms in electrical impedance tomography
Zastosowanie sieci neuronowych i algorytmów głębokiego uczenia w elektrycznej tomografii impedancyjnej
Autorzy:
Kłosowski, G.
Rymarczyk, T.
Powiązania:
https://bibliotekanauki.pl/articles/408307.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
imaging tomography
multilayer perceptron
deep learning
convolutional neural networks
tomografia obrazowa
perceptron wielowarstwowy
uczenie głębokie
sieć neuronowa konwolucyjna
Opis:
This paper refers to the cases of the use of Artificial Neural Networks and Convolutional Neural Networks in impedance tomography. Machine Learning methods can be used to teach computers different technical problems. The efficient use of conventional artificial neural networks in tomography is possible able to effectively visualize objects. The first step of implementation Deep Learning methods in Electrical Impedance Tomography was performed in this work.
W artykule zaprezentowano dwa przypadki dotyczące zastosowania sztucznych sieci neuronowych i konwolucyjnych sieci neuronowych w tomografii impedancyjnej. Uczenie maszynowe może znaleźć zastosowanie przy rozwiązywaniu różnorodnych problemów technicznych. W tomograficznej rekonstrukcji obrazów można stosować konwencjonalne sieci neuronowe. W niniejszej pracy przedstawiono przykład zastosowania metod głębokiego uczenia w obszarze elektrycznej tomografii impedancyjnej.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 3; 99-102
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A genetic algorithm based optimized convolutional neural network for face recognition
Autorzy:
Karlupia, Namrata
Mahajan, Palak
Abrol, Pawanesh
Lehana, Parveen K.
Powiązania:
https://bibliotekanauki.pl/articles/2201023.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
convolutional neural network
genetic algorithm
deep learning
evolutionary technique
sieć neuronowa konwolucyjna
algorytm genetyczny
uczenie głębokie
technika ewolucyjna
Opis:
Face recognition (FR) is one of the most active research areas in the field of computer vision. Convolutional neural networks (CNNs) have been extensively used in this field due to their good efficiency. Thus, it is important to find the best CNN parameters for its best performance. Hyperparameter optimization is one of the various techniques for increasing the performance of CNN models. Since manual tuning of hyperparameters is a tedious and time-consuming task, population based metaheuristic techniques can be used for the automatic hyperparameter optimization of CNNs. Automatic tuning of parameters reduces manual efforts and improves the efficiency of the CNN model. In the proposed work, genetic algorithm (GA) based hyperparameter optimization of CNNs is applied for face recognition. GAs are used for the optimization of various hyperparameters like filter size as well as the number of filters and of hidden layers. For analysis, a benchmark dataset for FR with ninety subjects is used. The experimental results indicate that the proposed GA-CNN model generates an improved model accuracy in comparison with existing CNN models. In each iteration, the GA minimizes the objective function by selecting the best combination set of CNN hyperparameters. An improved accuracy of 94.5% is obtained for FR.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 21--31
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of the Lombard effect based on a machine learning approach
Autorzy:
Korvel, Gražina
Treigys, Povilas
Kąkol, Krzysztof
Kostek, Bożena
Powiązania:
https://bibliotekanauki.pl/articles/24200693.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Lombard effect
speech detection
noise signal
self similarity matrix
convolutional neural network
efekt Lombarda
wykrywanie mowy
sygnał szumowy
sieć neuronowa konwolucyjna
Opis:
The Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters related to speech changes produced by the Lombard effect are extracted. Mid-term statistics are built upon the parameters and used for the self-similarity matrix construction. They constitute input data for a convolutional neural network (CNN). The self-similarity-based approach is then compared with two other methods, i.e., spectrograms used as input to the CNN and speech acoustic parameters combined with the k-nearest neighbors algorithm. The experimental investigations show the superiority of the self-similarity approach applied to Lombard effect detection over the other two methods utilized. Moreover, small standard deviation values for the self-similarity approach prove the resulting high accuracies.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 3; 479--492
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A weighted wrapper approach to feature selection
Autorzy:
Kusy, Maciej
Zajdel, Roman
Powiązania:
https://bibliotekanauki.pl/articles/2055180.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
feature selection
wrapper approach
feature significance
weighted combined ranking
convolutional neural network
classification accuracy
selekcja cech
sieć neuronowa konwolucyjna
dokładność klasyfikacji
Opis:
This paper considers feature selection as a problem of an aggregation of three state-of-the-art filtration methods: Pearson’s linear correlation coefficient, the ReliefF algorithm and decision trees. A new wrapper method is proposed which, on the basis of a fusion of the above approaches and the performance of a classifier, is capable of creating a distinct, ordered subset of attributes that is optimal based on the criterion of the highest classification accuracy obtainable by a convolutional neural network. The introduced feature selection uses a weighted ranking criterion. In order to evaluate the effectiveness of the solution, the idea is compared with sequential feature selection methods that are widely known and used wrapper approaches. Additionally, to emphasize the need for dimensionality reduction, the results obtained on all attributes are shown. The verification of the outcomes is presented in the classification tasks of repository data sets that are characterized by a high dimensionality. The presented conclusions confirm that it is worth seeking new solutions that are able to provide a better classification result while reducing the number of input features.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 685--696
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid approach of a deep learning technique for real-time ECG beat detection
Autorzy:
Patro, Kiran Kumar
Prakash, Allam Jaya
Samantray, Saunak
Pławiak, Joanna
Tadeusiewicz, Ryszard
Pławiak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2172118.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
cardiac abnormalities
CAD
convolutional neural network
CNN
deep learning
ECG
electrocardiogram
supra ventricular ectopic beats
SVE
nieprawidłowości kardiologiczne
sieć neuronowa konwolucyjna
uczenie głębokie
EKG
elektrokardiogram
Opis:
This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bio-electrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1 score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 3; 455--465
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea
Autorzy:
Kandukuri, Usha Rani
Prakash, Allam Jaya
Patro, Kiran Kumar
Neelapu, Bala Chakravarthy
Tadeusiewicz, Ryszard
Pławiak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/24200694.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sleep apnea
convolutional neural network
constant Q-transform
deep learning
single lead ECG signal
non apnea
obstructive sleep apnea
bezdech senny
sieć neuronowa konwolucyjna
uczenie głębokie
sygnał EKG
obturacyjny bezdech senny
Opis:
Obstructive sleep apnea (OSA) is a long-term sleep disorder that causes temporary disruption in breathing while sleeping. Polysomnography (PSG) is the technique for monitoring different signals during the patient’s sleep cycle, including electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and oxygen saturation (SpO2). Due to the high cost and inconvenience of polysomnography, the usefulness of ECG signals in detecting OSA is explored in this work, which proposes a two-dimensional convolutional neural network (2D-CNN) model for detecting OSA using ECG signals. A publicly available apnea ECG database from PhysioNet is used for experimentation. Further, a constant Q-transform (CQT) is applied for segmentation, filtering, and conversion of ECG beats into images. The proposed CNN model demonstrates an average accuracy, sensitivity and specificity of 91.34%, 90.68% and 90.70%, respectively. The findings obtained using the proposed approach are comparable to those of many other existing methods for automatic detection of OSA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 3; 493--506
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies