Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forecasting model" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Wykorzystanie modeli Takagi-Sugeno do krótkoterminowego prognozowania zapotrzebowania na energię elektryczną odbiorców wiejskich
Using the Takagi-Sugeno models for short-term forecasting of rural consumers demand for electric energy
Autorzy:
Trojanowska, M.
Małopolski, J.
Powiązania:
https://bibliotekanauki.pl/articles/289025.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
energia elektryczna
prognozowanie krótkoterminowe
model rozmyty
electric energy
short-term forecasting
fuzzy model
Opis:
Opracowano modele z wnioskowaniem typu Takagi-Sugeno o gaussowskich funkcjach przynależności w przestrzeni wejściowej do krótkoterminowego prognozowania zapotrzebowania na energię elektryczną odbiorców wiejskich. Ze względu na charakter zmienności obciążeń opracowano odrębne modele dla typowych dni tygodnia. Przeprowadzona analiza wykazała przydatność modeli Takagi-Sugeno do predykcji z wyprzedzeniem godzinowym i ich konkurencyjność w stosunku do rozmytych modeli Mamdaniego.
Models with concluding, Takagi-Sugeno type, with Gaussian functions of affiliation in entry space were developed for short-term forecasting of rural consumers' demand for electric energy. Due to loads variability character separate models were developed for typical week days. Completed analysis proved usability of the Takagi-Sugeno models for prediction with hourly advance, and their competitiveness compared to Mamdani fuzzy models.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 1, 1; 325-330
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie liniowych modeli rozmytych do prognozowania dobowego zapotrzebowania odbiorców wiejskich na energię elektryczną
The application of fuzzy linear models to forecasting the twenty-four hours demand of electric energy by the rural customers
Autorzy:
Trojanowska, M.
Małopolski, J.
Powiązania:
https://bibliotekanauki.pl/articles/238591.pdf
Data publikacji:
2008
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
energia elektryczna
prognozowanie krótkoterminowe
model rozmyty
electric energy
short-term forecasting
fuzzy model
Opis:
Zbudowano modele predykcyjne dla wszystkich dni tygodnia, oddzielnie modelując profil dnia, wartość średnią mocy dobowej oraz odchylenie standardowe przebiegu dobowego obciążenia. Średnie godzinowe zapotrzebowanie na energię elektryczną w ciągu doby oraz odchylenie standardowe tego zapotrzebowania zamodelowano opracowując rozmyte modele z wnioskowaniem typu Takagi-Sugeno. Analiza błędów prognoz wyznaczonych zgodnie z zaproponowaną metodą wykazała jej przydatność do lokalnego prognozowania krótkoterminowego.
Predictive models were developed in this study for all days of a week, separately modeling the profile of a day, average value of 24 hrs' power, as well as the standard deviation of 24 hrs' loading course. The average demand of electric energy per hour during a day and the standard deviation of this demand were modeled at working out of the fuzzy models with Takagi-Sugeno type of inference. Error analysis of the prognoses determined by using such a method confirmed its usefulness to local short-term forecasting.
Źródło:
Problemy Inżynierii Rolniczej; 2008, R. 16, nr 4, 4; 17-22
1231-0093
Pojawia się w:
Problemy Inżynierii Rolniczej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting GDP growth rate in Ukraine with alternative models
Autorzy:
Karayuz, I
Bidyuk, P.
Powiązania:
https://bibliotekanauki.pl/articles/118047.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
Regressive model
Bayesian network
short-term forecasting
GDP of Ukraine
Opis:
The problem of constructing mathematical model for short-term fore-casting of GDP is considered. First, extended autoregression is constru-cted that takes two additional independent variables into consideration. The model resulted provides a possibility for generating short-term forecasts of GDP though not of high quality. Another model was constructed in the form of a Bayesian network. The model turned out to be better than the multiple regression, it provides quite good estimates for probabilities of GDP growth direction.
Źródło:
Applied Computer Science; 2015, 11, 3; 88-97
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ekonometryczny model krótkoterminowego prognozowania zużycia gazu
Econometric model of short-term natural gas consumption forecasting
Autorzy:
Kwilosz, Tadeusz
Filar, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/2143631.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
model ekonometryczny
krótkoterminowe prognozowanie
zużycie gazu
econometric model
short-term forecasting
natural gas consumption
Opis:
W celu opracowania modelu krótkoterminowego zapotrzebowania na gaz konieczne jest dokonanie analizy najnowszych metod prognozowania matematycznego w celu wyboru i zaadaptowania właściwej z nich (spełniającej warunek efektywności i skuteczności). Niezbędne jest rozpoznanie i analiza czynników (głównie środowiskowych) wpływających na wynik krótkoterminowych prognoz oraz źródeł danych możliwych do wykorzystania. Efektem wykonanej pracy jest model numeryczny krótkoterminowego zapotrzebowania na gaz dla wybranej jednostki terytorialnej kraju. Opracowany model został skalibrowany i przetestowany na historycznych danych opisujących warunki środowiskowe i rzeczywiste zużycie gazu. Zaprojektowano i skalibrowano, na podstawie wybranego zestawu atrybutów (zmiennych objaśniających), niejednorodny liniowy model ekonometryczny. Dokonano statystycznej weryfikacji oszacowanych parametrów modelu. Warto zauważyć, że w krótkim terminie wykonania prognozy (7 dni) nie zachodzą znaczące zmiany w otoczeniu rynku gazowego (uruchomienie nowych inwestycji, podłączenie nowych użytkowników do systemu czy zmiany zapotrzebowania wynikające ze zmieniających się warunków makroekonomicznych). Inne czynniki techniczne, takie jak awarie linii produkcyjnych u odbiorców czy przestoje przemysłowe, są trudne do przewidzenia lub wiedza o nich rzadko jest dostępna. Z tego względu jedynymi czynnikami mogącymi mieć wpływ na zmiany zapotrzebowania gazu w krótkim terminie są czynniki pogodowe, które zostały wybrane jako zmienne objaśniające dla opracowanego modelu. Historyczne dane pogodowe zostały pobrane z usługi sieciowej (web service) OpenWeatherMap History Bulk. Jako zmiennej objaśnianej użyto dobowych wartości zużycia gazu dla jednego z województw Polski południowej. Dane zostały pobrane z systemu wymiany informacji operatora gazociągów przesyłowych. Dane dotyczą okresu trzyletniego, gdyż tylko takie dane zostały upublicznione. Zmienne objaśniające obejmują dobowe wartości danych pogodowych, takich jak: średnia temperatura, temperatura odczuwalna, temperatura minimalna, temperatura maksymalna, ciśnienie atmosferyczne, wilgotność względna, prędkość wiatru i kierunek wiatru.
In order to develop a mathematical model of short-term gas demand, it is necessary to analyze the latest mathematical forecasting methods in order to select and adapt the right one (meeting the condition of efficiency and effectiveness). It is necessary to recognize and analyze factors (mainly environmental) affecting the result of short-term forecasts and sources of data that can be used. The result of the work is a numerical model of short-term gas demand for a selected territorial unit of the country. The developed model was calibrated and tested on historical data describing environmental conditions and real gas consumption. A heterogeneous linear econometric model was designed and calibrated on the basis of a selected set of attributes (explanatory variables). The estimated parameters of the model were statistically verified. It is worth noting that in the short term of the forecast (7 days) there are no significant changes in the gas market environment (launching new investments, connecting new users to the system, or changes in demand resulting from changing macroeconomic conditions). Other technical factors, such as production line failures at customers or industrial downtime, are difficult to predict, or knowledge about their occurrence is rarely available. For this reason, the only factors that may have an impact on changes in gas demand in the short term are weather factors, which were selected as explanatory variables for the developed model. Historical weather data was retrieved from the OpenWeatherMapHistoryBulk web service. Daily values of gas consumption for one of the voivodships of southern Poland were used as the response variable. The data was downloaded from the information exchange system of the transmission pipeline operator. The data covers a three-year period, as only such data has been made public. The explanatory variables include the daily values of weather data such as: average temperature, chilled temperature, minimum temperature, maximum temperature, atmospheric pressure, relative humidity, wind speed and wind direction.
Źródło:
Nafta-Gaz; 2021, 77, 7; 454-462
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unobserved Component Model with Observed Cycle Use of BTS Data for Short-Term Forecasting of Industrial Production
Autorzy:
Dudek, Sławomir
Pachucki, Dawid
Powiązania:
https://bibliotekanauki.pl/articles/500318.pdf
Data publikacji:
2011
Wydawca:
Szkoła Główna Handlowa w Warszawie
Tematy:
industrial production
business tendency survey
short-term forecasting
unobserved component model
Opis:
In the paper we are checking the explanatory power of business tendency survey data (BTS) in short-term forecasts of industrial production within the framework of the unobserved component model (UCM). It is assumed that the "unobserved cyclical component" is common for reference quantitative variable and qualitative variable. In that sense the cyclical fluctuation of industrial production can be approximated by the fluctuations of BTS indicators. We call such a specification of structural time series model the “Unobserved component model with observed cycle" (UCM-OC). To estimate the system we are using the Kalman filter technique. Then we compare the model recursive one-period ahead forecasts to the historical path of the reference series to check its out-of-sample data fit. The forecasting properties are also evaluated against alternative models, i.e. "pure" UCM and ARIMA model. The analysis was performed for Poland and selected European Union countries.
Źródło:
Prace i Materiały Instytutu Rozwoju Gospodarczego SGH; 2011, 86:Business Surveys, Business Cycles. Polish Contribution to the 30th CIRET Conference; 83-100
0866-9503
Pojawia się w:
Prace i Materiały Instytutu Rozwoju Gospodarczego SGH
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies