Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "samoorganizujace sie mapy" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Nursing logistics activities in massive services
Autorzy:
Simić, D.
Powiązania:
https://bibliotekanauki.pl/articles/333536.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
systemy klasyfikacji
samoorganizujące się mapy
nursing logistics activities
classification system
learning vector quantization
self-organizing maps
Opis:
Hybrid patient classification system in nursing logistics activities is discussed in this paper. Hybrid classification model is based on two of the most used competitive artificial neural network algorithms that use learning vector quantization models (LVQ) and self-organizing maps (SOM). In general, the history of patient classification in nursing dates back to the period of Florence Nightingale. The first and the foremost condition for providing quality nursing care, which is measured by care standards, and determined by number of hours of actual care, is the appropriate number of nurses. It is possible to discus three types of experimental results. First result type could be assessment for risk of falling measured by Mors scale and pressure sores risk measured by Braden scale. Both of them are assessed by LVQ. Hybrid LVQ-SOM model is used for second result type, which presents the time for nursing logistics activities. The third type is possibility to predict appropriate number of nurses for providing quality nursing care. This research was conducted on patients from Institute of Neurology, Clinical Centre of Vojvodina.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 18; 77-84
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of Different-Sized Aerosol Monitoring Data
Klasyfikacja danych monitoringowych frakcji aerozolu o różnych rozmiarach cząstek
Autorzy:
Tsakovski, S.
Simeonov, V.
Powiązania:
https://bibliotekanauki.pl/articles/388252.pdf
Data publikacji:
2011
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
chemometria
klasyfikacja
mapy samoorganizujące się
frakcja aerozolowa
chemometrics
classification
self-organizing maps
aerosol fraction
seasonal sampling
Opis:
The present study deals with the application of self-organizing maps (SOM) of Kohonen for the classification of aerosol monitoring data sets from two sampling points (Arnoldstein and Unterloibach) located close to the border between Austria and Slovenia. The goal of the chemometric data treatment was to find some specific patterns in the classification maps for five different aerosol fractions collected in four different seasons of the year. The results obtained indicated a distinct separation of the ultrafine particles (PM 0.01–PM 0.4) from the other fractions which underlines their specific effect on human health. Seasonal separation but only between summer and winter sampling is also observed.
Przedstawiono wyniki badań monitoringowych próbek aerozolu atmosferycznego pobranych z dwóch punktów pomiarowych (Arnoldstein i Unterloibach) z pobliża granicy między Austrią i Słowenią. Dane zinterpretowano z wykorzystaniem samoorganizujących się map (SOM) Kohonena. Celem chemometrycznej interpretacji danych było znalezienie charakterystycznych struktur na mapach klasyfikacji dla pięciu różnych frakcji aerozoli, zebranych w czterech różnych porach roku. Uzyskane wyniki wskazują na wyraźne oddzielenie najdrobniejszych cząstek (PM 0,01 – PM 0,4) od innych frakcji, co wskazuje na ich specyficzne działanie na zdrowie człowieka. Obserwuje się również zmiany sezonowe, ale tylko między próbkami pobranymi latem i zimą.
Źródło:
Ecological Chemistry and Engineering. A; 2011, 18, 2; 275-288
1898-6188
2084-4530
Pojawia się w:
Ecological Chemistry and Engineering. A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies