Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "self-organizing map (SOM)" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Adaptive modelling of spatial diversification of soil classification units
Adaptacyjne modelowanie przestrzennego zróżnicowania jednostek klasyfikacyjnych gleb
Autorzy:
Urbański, K.
Gruszczyński, S.
Powiązania:
https://bibliotekanauki.pl/articles/292945.pdf
Data publikacji:
2016
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
adaptive algorithms
self-organizing map (SOM)
soil classification
Upper Silesian Industrial Region
algorytmy adaptacyjne
Górnośląski Okręg Przemysłowy (GOP)
klasyfikacja gleb
samoorganizująca mapa (SOM)
Opis:
The article presents the results of attempts to use adaptive algorithms for classification tasks different soils units. The area of study was the Upper Silesian Industrial Region, which physiographic and soils parameters in the form of digitized was used in the calculation. The study used algorithms, self-organizing map (SOM) of Kohonen, and classifiers: deep neural network, and two types of decision trees: Distributed Random Forest and Gradient Boosting Machine. Especially distributed algorithm Random Forest (algorithm DRF) showed a very high degree of generalization capabilities in modeling complex diversity of soil. The obtained results indicate, that the digitization of topographic and thematic maps give you a fairly good basis for creating useful models of soil classification. However, the results also showed that it cannot be concluded that the best algorithm presented in this research can be regarded as a general principle of system design inference.
Wraz z rozwojem technologii informatycznych następuje stopniowa zmiana podejścia do dokumentacji kartograficznej obiektów przyrodniczych, w tym gleb. Podstawowymi cechami dowolnej klasyfikacji, których przedmiotem są gleby, jest wielowymiarowość jednostek (nie ma pojedynczej właściwości, możliwej do wyznaczenia w drodze pomiaru, która wystarczałaby do jednoznacznego przypisania pedonu do określonej klasy w stosowanych skalach klasyfikacyjnych gleb), w związku z czym właściwe wydaje się wykorzystanie do tego celu dostępnych komputerowych metod przetwarzania danych. Modelowanie przestrzennego zróżnicowania gleb na podstawie przesłanek natury fizjograficznej, odtworzonych na podstawie digitalizacji istniejących materiałów kartograficznych, jest podstawą do tworzenia przestrzennych baz danych przechowywanych w wersji cyfrowej. Inaczej niż w typowej kartografii tematycznej zawierającej treści glebowo-siedliskowe, modele te wskazują na prawdopodobieństwo a priori występowania określonej jednostki glebowej w określonym położeniu, nie zaś bezwzględną przynależność terenu do niej. Taka interpretacja wymaga zbudowania stosownego algorytmu wiążącego czynniki natury geologicznej i fizjograficznej z jednostkami glebowymi. Do tego celu często wykorzystuje się tak zwane algorytmy adaptacyjne, umożliwiające elastyczne tworzenie modeli zależności bazujących na danych. W pracy przedstawiono dwa warianty doboru parametrów przetwarzania danych fizjograficzno-glebowych potencjalnie przydatnych do tych celów. Wykorzystano dane pochodzące z bazy danych fizjograficznoglebowych z rejonu GOP (Górnośląski Okręg Przemysłowy) uzyskanych w wyniku digitalizacji materiałów kartograficznych. Analizie poddano wyłącznie tereny użytków rolnych: gruntów ornych (R) i trwałych użytków zielonych (Ł i Ps). Na obszarze o powierzchni 1 km2 wyodrębniono 6,4 mln jednostek tworzących siatkę kwadratów o rozmiarach 20 × 20 m. Wykorzystane zostały algorytmy samoorganizującej mapy (SOM) Kohonena oraz klasyfikatory – głęboka sieć neuronowa, oraz dwa rodzaje drzew decyzyjnych – rozproszony las losowy (ang. Distributed Random Forest) i wzmacniane drzewa losowe (ang. Gradient Boosting Machine). Szczególnie algorytm rozproszonego lasu losowego (algorytm DRF) wykazał bardzo wysoki stopień zdolności generalizacyjnej w modelowaniu zróżnicowania kompleksów glebowych.
Źródło:
Journal of Water and Land Development; 2016, 30; 127-139
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod czarnej skrzynki do prognozowania wartości wybranych wskaźników jakości ścieków dopływających do oczyszczalni komunalnej
Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant
Autorzy:
Szeląg, B.
Bartkiewicz, L.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/236740.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
modelowanie
prognozowanie jakości ścieków metoda MARS
metoda lasów losowych (RF)
metoda samoorganizujących się sieci neuronowych (SOM)
metoda drzew wzmacnianych (BT) metoda analizy składowych
głównych (PCA)
sewage
modeling
sewage quality forecasting
MARS (multivariate adaptive regression spline)
random forest (RF)
self-organizing map (SOM)
boosted trees (BT)
principal component analysis (PCA)
Opis:
Prognozowanie ilości i jakości ścieków dopływających do oczyszczalni komunalnej z odpowiednim wyprzedzeniem czasowym daje możliwość optymalnego sterowania wieloma parametrami procesów oczyszczania ścieków. Dlatego prowadzi się badania mające na celu opracowanie modeli matematycznych (fizykalnych deterministycznych i operatorowych statystycznych), prognozujących zarówno ilość, jak i jakość ścieków dopływających do oczyszczalni. W artykule zbadano możliwość zastosowania prostszych modeli operatorowych do prognozowania wartości wybranych wskaźników jakości ścieków na dopływie do oczyszczalni (BZT5, zawiesiny ogólne, azot ogólny i amonowy, fosfor ogólny) jedynie na podstawie wyników pomiarów natężenia przepływu ścieków oraz – w celu porównania – na podstawie ich zmierzonych wartości. Do tego celu zastosowano metody czarnej skrzynki typu MARS oraz lasy losowe (RF). Dodatkowo przedstawiono możliwość połączenia metody lasów losowych z modelem klasyfikacyjnym (RF+SOM). Do identyfikacji danych określających zmienność wybranych wskaźników jakości ścieków zastosowano metody drzew wzmacnianych (BT) i analizy składowych głównych (PCA). Modele opracowano na podstawie wyników ciągłych pomiarów dobowych przeprowadzonych w latach 2013–2015 w oczyszczalni ścieków komunalnych w Rzeszowie.
Forecasting the amount and quality of wastewater flowing into a treatment plant sufficiently in advance, enables effective control of numerous treatment process parameters. Therefore, mathematical (physical deterministic and time series statistical) models forecasting both the amount and quality of wastewater inflow into a sewage treatment plant are under development. In this paper, a possibility of simpler time series models application to forecasting values of selected indicators (biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonium (NH4+)) of sewage quality in the inflow into a treatment plant was investigated. The research was based solely on sewage flow rate data and – for the purpose of comparison – the actual measured indicator values. For this purpose, MARS type black-box and random forest (RF) methods were used. Also, a possibility of combining the RF method with a classification model (RF+SOM) was investigated. Boosted trees (BT) and principal component analysis (PCA) methods were applied for identification of data that determine variability of the selected sewage quality indicators. The models were developed on the basis of continuous daily measurements performed in the period of 2013–2015 in the municipal sewage treatment plant in Rzeszow.
Źródło:
Ochrona Środowiska; 2016, 38, 4; 39-46
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies