Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Search Method" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Solving some deterministic finite horizon inventory models
Autorzy:
Sinha, P.
Powiązania:
https://bibliotekanauki.pl/articles/406508.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
inventory
finite horizon
globally optimal solution
search method
Opis:
Two single-item, deterministic, continuous, finite horizon inventory models having no shortage have been considered. A demand rate function, which is relatively general, for the item has been assumed. In the first model, units of the item do not deteriorate; while in the second units deteriorate in a constant fraction rate. Some optimality conditions are shown for the models. Based on these properties, single variable search methods have been described to obtain globally optimal solutions. Numerical experiments indicate that the methods yield acceptable solutions within small time and are suitable for practical applications.
Źródło:
Operations Research and Decisions; 2013, 23, 1; 63-74
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of optimization algorithms of connectionist temporal classifier for speech recognition system
Porównanie algorytmów optymalizacji klasyfikatora czasowego do systemu rozpoznawania mowy
Autorzy:
Amirgaliyev, Yedilkhan
Darkhan, Kuanyshbay
Shoiynbek, Aisultan
Powiązania:
https://bibliotekanauki.pl/articles/408796.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
recurrent neural network
search method
acoustic
systems modeling language
rekurencyjna sieć neuronowa
metoda wyszukiwania
akustyka
język modelowania systemów
Opis:
This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long- Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results of optimization algorithms have been evaluated by the Label error rate and CTC loss.
W artykule dokonano oceny i porównania wydajności trzech znanych algorytmów optymalizacyjnych (Adagrad, Adam, Momentum) w celu przyspieszenia treningu sieci neuronowej algorytmu CTC do rozpoznawania mowy. Dla algorytmów CTC wykorzystano rekurencyjną sieć neuronową, w szczególności LSTM, która jest efektywnym i często używanym modelem. Dane zostały pobrane z wydziału VCTK Uniwersytetu w Edynburgu. Wyniki algorytmów optymalizacyjnych zostały ocenione na podstawie wskaźników Label error i CTC loss.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 3; 54-57
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies