Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "modelowanie temperatury" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Application of the Ansys Fluent program for modelling environmental phenomena in a living room
Autorzy:
Kosiń, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/2174974.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska
Tematy:
modelowanie numeryczne
CFD
rozkład termiczny
rozkład wilgotności
komfort cieplny
rozkład temperatury
numerical modeling
thermal distribution
humidity distribution
thermal comfort
temperature distribution
Opis:
The article presents a three-dimensional numerical analysis of heat and humidity parameters carried out for a living room in a multi-family building. The aim of the analysis was to compare alternative heating methods with the existing one. Two cases were included in the analysis: case I - the existing state, case II - the existing state with an additional panel heater. In order to verify the numerical analysis for case I, the temperature and relative humidity were measured. During the heating period, the thermal conditions in the room did not favor the comfort of users, especially in one part of the room. The study may be a tool for future research related to the implementation of the climatic conditions of rooms with similar structural and functional features.
Źródło:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym; 2021, 10, 2; 53--59
2299-8535
2544-963X
Pojawia się w:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie jako narzędzie do zrozumienia i udoskonalenia techniki iskrowego spiekania plazmowego
Modeling as a tool for understanding and improvement of Spark Plasma Sintering technique
Autorzy:
Laptev, A.
Powiązania:
https://bibliotekanauki.pl/articles/212178.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Obróbki Plastycznej
Tematy:
spiekanie plazmowe iskrowe
spiekanie aktywowane polem elektrycznym
multifizyka
modelowanie metodami elementów skończonych
metoda elementów skończonych
MES
rozkład temperatury
spark plasma sintering
field assisted sintering
multiphysics
finite element modeling
temperature distribution
Opis:
Iskrowe spiekanie plazmowe (SPS) jest nowoczesną metodą prasowania na gorąco bazującą na szybkim nagrzewaniu oporowym. Aktualnie SPS znajduje się w fazie przejściowej pomiędzy pracami badawczo-rozwojowymi a produkcją masową części z proszków metalicznych i ceramicznych. Kluczowym elementem tej metody jest zrozumienie i kontrolowanie rozkładu temperatury wewnątrz narzędzi, w szczególności w wyprasce. Zagadnienie to jest szczególnie ważne przy spiekaniu części wielkogabarytowych, części o złożonej geometrii oraz przy spiekaniu materiałów gradientowych i ogniotrwałych. Wiedza w zakresie pola termicznego pozwala na opracowanie konstrukcji matryc oraz przebiegu procesu spiekania, umożliwiając jednorodny, zdefiniowany rozkład temperatury zależny od aplikacji. W rezultacie, jednorodna lub gradientowa struktura i właściwości mogą zostać osiągnięte. Temperatura nie może być mierzona bezpośrednio wewnątrz wypraski. Dlatego zastosowano metodę elementów skończonych (MES) do numerycznego modelowania rozkładu temperatury. W niniejszym artykule przedstawiono szczegółowo teoretyczne podstawy modelowania. Podkreślono wzajemne oddziaływanie pola elektrycznego, cieplnego i mechanicznego podczas SPS. Przedyskutowano metodologię rozwiązania tego złożonego problemu multifizycznego oraz jego ewentualnego wdrożenia poprzez komercyjne kody MES. Przedstawiono przykład modelowania. Sformułowano perspektywę dla dalszego modelowania. Szczególnie, pole magnetyczne musi być poza tym rozważane podczas modelowania SPS z nagrzewaniem hybrydowym np. z dodatkowym zewnętrznym nagrzewaniem indukcyjnym (nowa hybrydowa koncepcja nagrzewania).
Spark Plasma Sintering (SPS) is a new hot pressing technique based on the rapid resistive heating. Currently, SPS is in a transition from the R&D phase to the mass production of metallic and ceramic powder parts. The critical point of this technique is understanding and control of temperature field inside the tool and especially in the powder preform. This issue is particularly important at sintering of large-sized parts, parts with a complex geometry and at sintering of functionally graded and refractory materials. The knowledge of temperature field allows the elaboration of die design and sintering cycle profile enabling homogeneous or predefined temperature distribution depending on application. As a result, homogeneous or functionally graded structure and properties can be achieved. The temperature cannot be directly measured inside the powder preform. Therefore, the Finite Element Method (FEM) is used for numerical modeling of the temperature field. In the present paper the theoretical background of modeling is presented in detail. The interaction of electrical, thermal and mechanical fields during SPS is highlighted. The solution methodology for this complex problem of Multiphysics and its possible implementation by commercial FEM codes are discussed. An example on sintering modeling of tungsten-based powder composite is presented. The outlook for further modeling is formulated. Particularly, magnetic field has to be besides considered during the modeling SPS with the hybrid heating i.e. with an additional external inductive heating (new hybrid heating concept).
Źródło:
Obróbka Plastyczna Metali; 2016, 27, 3; 223-240
0867-2628
Pojawia się w:
Obróbka Plastyczna Metali
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation of phase-change boundary position in continuous casting
Autorzy:
Ivanova, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/380559.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
solidification process
information technology
foundry industry
mathematical modeling
temperature distribution
Stefan condition
phase change boundary
continuous casting
krzepnięcie stopu
technologia informacyjna
przemysł odlewniczy
modelowanie matematyczne
rozkład temperatury
warunek Stefana
granica międzyfazowa
odlewanie ciągłe
Opis:
The problem of determination of the phase-change boundary position at the mathematical modeling of continuous ingot temperature field is considered. The description of the heat transfer process takes into account the dependence of the thermal physical characteristics on the temperature, so that the mathematical model is based on the nonlinear partial differential equations. The boundary position between liquid and solid phase is given by the temperatures equality condition and the Stefan condition for the two-dimensional case. The new method of calculation of the phase-change boundary position is proposed. This method based on the finite-differences with using explicit schemes and on the iteration method of solving of non-linear system equations. The proposed method of calculation is many times faster than the real time. So that it amenable to be used for model predictive control of continuous semifinished product solidification.
Źródło:
Archives of Foundry Engineering; 2013, 13, 4; 57-62
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies