Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rice-husk" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Study of Zeolite Phase Made from Rice Husk Ash and Sidrap Clay
Autorzy:
Armayani, M.
Mansur, Musdalifa
Asra, Reza
Irwan, Muh
Ramadhanty, Dhian
Subaer, Subaer
Abdullah, Mohd Mustafa Al Bakri
Aziz, Ikmal Hakem A.
Jeż, Bartłomiej
Nabiałek, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2203746.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
autoclave
clay
rice husk ash
zeolite
Opis:
Zeolite has been successfully synthesized from clay and rice husk ash in the form of powder by using the hydrothermal method with variations in chemical compositions of alkaline solution and the amount of rice husk ash. The clay raw material was obtained from the Sidrap area of South Sulawesi and rice husk ash is obtained from the burning pile of rice husks. Sidrap clay and rice husk ash were activated using an alkaline solution of NaOH and varied rice husk ash and the addition of AlCl3. The addition of AlCl3, an alkaline solution of NaOH and H2O was used in the amount of 25.5 grams and variations of rice husk ash were 2.5 grams and 6.5 grams. Meanwhile, without the addition of AlCl3, an alkaline solution of NaOH and H2O was used for 20.5 grams and variations of rice husk ash from 2.5 grams and 6.5 grams. Then the mixture was then put into an autoclave with a temperature of 100°C for 3 hours. The basic material used in the manufacture of zeolite is carried out by X-ray Fluorescence (XRF) characterization to determine the constituent elements of basic material, which showed the content of SiO2 was 45.80 wt% in the clay and 93.40% in the rice husk ash. The crystalline structure of the zeolite formed was characterized by X-Ray Diffraction (XRD). It was found the resulting zeolite were identified as Zeolite-Y, Hydrosodalite, and ZSM-5. The microstructure properties of the resulting zeolite were determined by using Scanning Electron Microscopy (SEM).
Źródło:
Archives of Metallurgy and Materials; 2023, 68, 1; 269--274
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of Natural Silica from Rice Husk Ash and Nickel as a Catalyst on the Hydrogen Storage Properties of $MgH_2$
Autorzy:
Malahayati, -
Yufita, Evi
Ismail, Ismail
Mursal, Mursal
Idroes, Rinaldi
Jalil, Zulkarnain
Powiązania:
https://bibliotekanauki.pl/articles/2028172.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
hydrogen storage
natural silica
rice husk ash
high energy ball milling
desorption temperature
Opis:
The characteristics of $MgH_2$ as a hydrogen storage material in this study were observed by varying the composition of the catalyst. The added catalyst was a dual catalyst, namely nickel and natural silica extracted from rice husk ash with a composition of $MgH_2$ + 10 wt% $SiO_2$ + 10 wt% Ni (Sample A), then $MgH_2$ + 5 wt% $SiO_2$ + 10 wt% Ni (Sample B) , and $MgH_2$ + 10 wt% $SiO_2$ + 5 wt% Ni (sample C). The samples were prepared using the high energy ball milling (HEBM). The results showed that the natural silica extracted from rice husk ash (hereafter called “RHA“) can be used as a catalyst in $MgH_2$. Then, simultaneous use of nickel with silica as dual catalyst has shown the improvement in the hydrogen storage characteristics such as temperature and desorption time. The results of this study also indicate that the composition of the catalyst affects the particle size, although the time and milling treatment are the same. Furthermore, the particle size affects the characteristics of $MgH_2$ as a hydrogen storage material. Apart from particle size, there are other parameters that influence the characteristics of $MgH_2$, which appear during the sample preparation process such as impurity and agglomeration phases, all of which are closely related to the composition and type of catalyst used and the milling treatment applied to the sample. The 10 hours milling time used in this study has succeeded in reducing the sample to nano size. The Mg-based materials which have a nanostructure will have a larger contact area for the hydrogen reaction. The diffusion distance during the hydrogen absorption reaction also becomes smaller so as to improve the kinetic and thermodynamic characteristics of $MgH_2$.
Źródło:
Journal of Ecological Engineering; 2021, 22, 11; 79-85
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructure silica leached by NaOH from semi-burned rice husk ash for moisture adsorbent
Autorzy:
A’yuni, D.Q.
Subagio, A.
Hadiyanto, H.
Kumoro, A.C.
Djaeni, M.
Powiązania:
https://bibliotekanauki.pl/articles/2175795.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
microstructure
moisture absorption
silica
rice husk ash
mikrostruktura
absorpcja wilgoci
krzemionka
popiół z łusek ryżu
Opis:
Purpose: This work aims to study the water vapor adsorption property of fine silica particles from semi-burned rice husk ash. The semi-burned rice husk ash is selected as the raw material since it contains high silica and is easily found as a by-product of pottery furnace combustion. Design/methodology/approach: The silica adsorbent from semi-burned rice husk ash was prepared through a sol-gel method using various NaOH concentrations. In doing so, the different pH precipitation was also observed. Here, the fine silica powder was obtained by pulverizing dry sol-gel. The product characterizations were conducted based on water adsorption capacity at different air relative humidity. Findings: The results show no significant effects of different treatments in the extraction and gelation process. The fine silica particles exhibit large porous surfaces with agglomerated nano-sized particles that formed pores. This porous structure is related to the distributions of pore size of each sample, which mostly obey the mesoporous characteristics. From sorption isotherm, weak adsorbent-adsorbate bonding was observed and demonstrated multilayer adsorption of mesoporous materials. Research limitations/implications: The study of water adsorption was carried out at room temperature, which can change at any time, even though has no significant effect on the humidity. However, it is needed to study the adsorption in an incubated area to receive a constant temperature. Practical implications: The products namely silica prepared from semi-burned rice husk ash show a high moisture uptake, especially at a high relative humidity region. This property can be comparable with the other silica preparation methods. So, this product can be a highly potential adsorbent for air or gas dehumidification systems. Originality/value: The silica-based semi-burned rice husk ash as a water adsorbent is more sustainable than commercial silica. This is a positive contribution to find a potentially develop water vapor adsorbent with good adsorption capacity. Besides, the synthesis process is a simple and low-cost process.
Źródło:
Archives of Materials Science and Engineering; 2021, 108, 1; 5--15
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bond strength of concrete-filled hollow section with modified fibrous foamed concrete
Autorzy:
Khairuddin, S. A. A.
Rahman, N. A.
Jamaluddin, N.
Jaini, Z. M.
Elamin, A.
Rum, R. H. M.
Powiązania:
https://bibliotekanauki.pl/articles/230151.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
siła wiązania
pusta sekcja wypełniona betonem
CFHS
beton modyfikowany
beton włóknisty
beton spieniony
popiół z łusek ryżowych
RHA
wytrzymałość
metoda push-out
bond strength
concrete filled hollow section
modified fibrous foamed concrete
rice husk ash
strength
push-out method
Opis:
The concrete-filled section of columns has been widely in construction used due to its structural elements. As a result, the usage of composite columns has recently increased all over the world. However, using foamed concrete alone does not result in much improvements in strength. Therefore, this paper examines the use of foamed concrete containing fibre to improve the strength of composite columns. Specifically, this study aims to determine the bond strength of concrete-filled hollow section (CFHS) with modified fibrous foamed concrete. Two types of fibre are used in this work, namely, steel fibre and polypropylene fibre, with rice husk ash (RHA) as a sand replacement to improve the compressive strength of foamed concrete. The CFHS with modified fibrous foamed concrete is tested by using the push-out method, and the results show that CFHS with steel fibre has a highest bond strength.
Źródło:
Archives of Civil Engineering; 2020, 66, 3; 97-108
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies