Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Distinction of lakes and rivers on satellite images using mathematical morphology
Rozróżnienie rzek i jezior na zdjęciach satelitarnych, przy użyciu morfologii matematycznej
Autorzy:
Kupidura, P.
Powiązania:
https://bibliotekanauki.pl/articles/209269.pdf
Data publikacji:
2013
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
mathematical morphology
remote sensing
classification
contextual classification
morfologia matematyczna
teledetekcja
klasyfikacja
klasyfikacja kontekstualna
Opis:
This paper concerns the application of mathematical morphology for object-oriented classification of satellite images. The example of distinguishing different bodies of water using the author-made algorithm will be presented. Different types of water bodies like lakes and rivers are easy to differentiate when visually interpreted. However, it is much more difficult to differentiate using a traditional, pixel-based classification process. Mathematical morphology operations, which take into account such import ant features of objects like shape and size, allow these two types of water bodies to be distinguished in object classification. The proposed algorithm allows one practically error-free classification. The results show, that mathematical morphology is a potent tool for object-oriented classification.
Artykuł dotyczy zastosowania morfologii matematycznej do obiektowej klasyfikacji treści zdjęć satelitarnych. Działanie wybranych operacji morfologicznych przedstawione jest na przykładzie autorskiego algorytmu, którego celem jest rozróżnienie różnych typów zbiorników wód powierzchniowych, takich jak jeziora i rzeki. Ponieważ takie rozróżnienie wymaga wzięcia pod uwagę takich cech obiektów, jak rozmiar, długość, czy szerokość, kształt, tradycyjna klasyfikacja pikselowa, oparta na wartościach pikseli, jest nieskuteczna. Operacje morfologii matematycznej, ze swojej natury kontekstualne, pozwalają uwzględnić wspomniane wcześniej cechy, co z kolei umożliwia odróżnienie obiektów na podstawie ich kształtu. Klasyfikacja dokonana przy użyciu autorskiego algorytmu na zdjęciach satelitarnych przedstawiających różnego rodzaju obszary testowe, została porównana z wynikami fotointerpretacji zdjęcia, uznanej za bezbłędną. Porównanie wskazuje na dużą skuteczność prezentowanego algorytmu, a jednocześnie, na duży potencjał operacji morfologicznych w zakresie obiektowej klasyfikacji zdjęć lotniczych i satelitarnych.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2013, 62, 3; 57-69
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytm automatycznego oszacowania zróżnicowania gatunkowego drzewostanu z wykorzystaniem zdjęć RGB koron drzew
Species diversity of forest stands estimation algorithm using RGB images of the tree crowns
Autorzy:
Kotlarz, J.
Kacprzak, M.
Powiązania:
https://bibliotekanauki.pl/articles/276150.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
bioróżnorodność
algorytmika
PCA
teledetekcja
klasyfikacja
ISOCLASS
leśnictwo
biodiversity
algorithmic
remote sensing
classification
forestry
Opis:
Ocena różnorodności gatunkowej ekosystemów jest jednym z fundamentalnych działań mających na celu ochronę naturalnych siedlisk, ich zdrowotności i użyteczności dla człowieka. W artykule zaproponowany został algorytm oszacowania wskaźnika Shannona-Wienera różnorodności drzewostanów za pomocą analizy statystycznej (PCA) oraz klasyfikacji (ISOCLASS) zdjęć RGB. Wykonanie zdjęć nie wymaga stosowania drogiego sprzętu i przy zachowaniu odpowiednich warunków oświetleniowych może być użyteczne w bieżącym monitoringu drzewostanów. Z drugiej strony, wskaźniki różnorodności wymagają walidacji in-situ. Algorytm posłużył w sierpniu 2016 r. do oszacowania różnorodności drzew w rezerwacie “Młochowski Grąd”. Za pomocą aparatu fotograficznego zintegrowanego z telefonem Microsoft Lumia 550 pozyskano 24 zdjęcia koron drzew w sześciu wchodzących w skład rezerwatu wydzieleniach leśnych. W wydzieleniu o najwyższej różnorodności wynik otrzymany za pomocą algorytmu ze względu na brak możliwości objęcia na pojedynczych zdjęciach wszystkich obecnych w nim gatunków nie odzwierciedlił faktycznego zróżnicowania drzewostanu. W pięciu wydzieleniach otrzymane wyniki były zbieżne z danymi in-situ zawartymi w Banku Danych o Lasach (współczynnik korelacji Pearsona = 0,967).
Global measurement of ecosystems species diversity is one of the fundamental postulates in natural habitats healthiness and usefulness protection. In the article an algorithm to estimate the Shannon-Wiener forest stands biodiversity indicator has been proposed. The algorithm includes statistical analysis (PCA) and classification methodology (ISOCLASS) for simple RGB images. Getting RGB images does not require the use of expensive hardware. Taking into account the sunlight conditions RGB images can be useful in the continuous forest stands monitoring. In August 2016 an attempt was made to estimate the diversity of the trees in the “Młochowski Grad” nature reserve using proposed in this article algorithm. Using camera integrated with a Microsoft Lumia 550 smartphone 24 images of trees crowns were acquired in the all six reserve forest stands. In the one stand with the highest crowns diversity the algorithms result does not agree with Forest Data Bank in-situ estimation. In the other five stands the results were consistent with the data in the Forest Data Bank (Pearson correlation index = 0.967).
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 1; 63-70
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of criteria for burned area identification in nizhnee priangarye territory using GIS
Autorzy:
Slinkina, O.
Bychkov, V.
Sukhinin, A.
Powiązania:
https://bibliotekanauki.pl/articles/129801.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
remote sensing
GIS
classification
burned area
felling area
teledekcja
klasyfikacja
spalony obszar
obszar ścinki
Opis:
The damage of Nizhnee Priangarye forests was analyzed in this work using high resolution remote sensing data received from “Landsat” and “Resource” satellites. The processing was performed with the help of “ERDAS IMAGIN 8.4” Geo Information System. The suitability of Landsat imagery for damaged forest mapping was ascertained.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2003, 13a; 219-223
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A visual mining based framework for classification accuracy estimation
Podstawy wizualnej eksploracji do szacowania dokładności klasyfikacji
Autorzy:
Arun, P. V.
Powiązania:
https://bibliotekanauki.pl/articles/145456.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
teledetekcja
klasyfikacja obrazu
wizualizacja
data mining
remote sensing
decision tree
image classification
visualization
Weka
Prefuse
Opis:
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images.
echniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
Źródło:
Geodesy and Cartography; 2013, 62, 2; 113-121
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja zorientowana obiektowo w inwentaryzacji obiektów Zielonej Infrastruktury na przykładzie dzielnicy Ursynów w Warszawie
Object-oriented classification in the inventory of Green Infrastructure objects on the example of the Ursynów district in Warsaw
Autorzy:
Pyra, M.
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/132279.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
klasyfikacja obiektowa
zielona infrastruktura
planowanie przestrzenne
remote sensing
Geographic Object-Based Image Analysis
green infrastructure
spatial management
Opis:
Zielona Infrastruktura jest koncepcją zintegrowanego podejścia do funkcjonalnego i przestrzennie powiązanego planowania obszarów zurbanizowanych wraz z ochroną elementów środowiska, która na przestrzeni ostatnich lat została doceniona przez podmioty odpowiedzialne za planowanie przestrzenne. Niniejsza praca przedstawia możliwości wykorzystania przetworzeń zobrazowań satelitarnych metodami klasyfikacji obiektowej w inwentaryzacji, planowaniu i monitorowaniu obiektów Zielonej Infrastruktury. Do tego celu wykorzystano zobrazowanie satelitarne pozyskane przez satelitę Pleiades w maju 2012 roku, reprezentujące obszar części dzielnicy Ursynów m.st. Warszawy. Wykorzystane w pracy metody klasyfikacji obiektowej wykazały wysoką efektywność w realizacji założonych zadań.
Green Infrastructure is a conception of an integrated approach to functional and spatially related planning of urban areas, along with environmental protection, which in recent years has been appreciated by spatial planning specialists. This study presents the capabilities of using satellite image processing with Geographic Object-Based Image Analysis methods in the inventory, planning and monitoring of Green Infrastructure objects. For this purpose, a satellite image acquired by the Pleiades satellite in May 2012, representing the area of a part of the Ursynów district of the capital city of Warsaw, was used. The object-oriented classification methods used in this work showed high effectiveness in the implementation of the tasks defined.
Źródło:
Teledetekcja Środowiska; 2018, 59; 29-49
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of efficiency of extraction of built-up areas in aerial images using fractal analysis and morphological granulometry
Porównanie efektywności wyodrębniania terenów zabudowanych na obrazach lotniczych przy pomocy analizy fraktalnej i granulometrii morfologicznej
Autorzy:
Kupidura, P.
Popławski, W.
Sitko, P.
Powiązania:
https://bibliotekanauki.pl/articles/132365.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
remote sensing
mathematical morphology
fractal analysis
classification
digital image processing
teledetekcja
morfologia matematyczna
analiza fraktalna
klasyfikacja
cyfrowe przetwarzanie obrazów
Opis:
The paper presents a comparison of results of the automatic extraction of built-up areas, based on fractal analysis and granulometric maps, in the aerial images. Built-up areas as a land-use class can be clearly seen in an aerial or satellite image, due to its high granularity, but for the same reason they are very difficult to extract using a “traditional” non-contextual, pixel-based classification. Both approaches presented in the paper, using fractal analysis and morphological granulometry, base generally on a pixel-based classification, but performed on images reviously processed using these two types of processes. Fractal analysis consists in an empirical computing of fractal dimension of parts of an image, using a box-counting method. Such an approach generates an image where pixel values are equal to a fractal dimension values of their neighbourhood. Since we can interpret a fractal dimension as a level of granularity, a simple reclassification of such an image can improve a performance of an automatic extraction of built-up area effectively. The approach based on a morphological granulometry creates a number of granulometric maps – images where pixel values mean an amount of objects of certain size in a set neighbouring fragment of an image. This way a number of these images can be processed using a pixel-based classification, to perform an effective extraction of built-up areas in an image. The results of the presented approaches have been compared to the reference mask obtained basing on a visual interpretation of the image.
Źródło:
Teledetekcja Środowiska; 2015, 52; 29-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wstępne wyniki klasyfikacji siedlisk łąkowych pod względem odwodnienia w rejonie kopalni węgla brunatnego Bełchatów przy użyciu statystyk strefowych oraz danych satelitarnych
Preliminary results of grassland habitats classification in terms of moisture conditions in the area of Bełchatów lignite mine using zonal statistics and satellite imageries
Autorzy:
Przeździecki, K.
Zawadzki, J.
Miatkowski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/346465.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Informacji Przestrzennej
Tematy:
siedliska łąkowe
wilgotność gleby
metoda trójkąta
teledetekcja
klasyfikacja odwodnienia
grasslands
soil moisture
triangle method
remote sensing
moisture conditions classification
Opis:
Wydobycie surowców mineralnych metodami odkrywkowymi niesie za sobą konieczność odwadniania złóż mineralnych. Na skutek działania systemu odwadniającego na dużym obszarze powstaje lej depresji wód podziemnych, który ujemnie oddziałuje na środowisko. Na skutek obniżenia zwierciadła wód podziemnych w środowisku zachodzą często nieodwracalne zmiany. Sytuacja ta jest szczególnie widoczna w przypadku siedlisk hydrogenicznych, które ze swojej natury są zależne od wody. Zasięg leja depresji wyznaczony za pomocą pomiarów w studniach piezometrycznych nie zawsze daje informacje na temat jego faktycznego oddziaływania na zbiorowiska roślinne. Dzieje się tak ponieważ wiele zależy od głębokości ukorzenienia roślin. W pracy autorzy przedstawią metodykę klasyfikacji terenów łąkowych pod względem odwodnienia oraz uzyskane przy jej zastosowaniu wstępne wyniki z obszaru Kotliny Szczercowskiej znajdującej się pod wpływem systemu odwadniającego kopalni węgla brunatnego PGE GiEK S.A. O/KWB Bełchatów. Analizy zostały wykonane na podstawie zdjęć misji Landsat (5TM, 7ETM oraz 8 OLI/TIRS). Do najważniejszych etapów opisywanej metodyki należy zaliczyć tzw. metodę trójkąta pozwalającą na wyznaczenie wskaźnika TVDI (ang. Temperature-Vegetation Dryness Index) oraz zastosowanie statystyk strefowych. Jako źródło danych o pokryciu terenu wykorzystano bazę Corine Land Cover 2006. Wyniki uzyskane za pomocą metodyki teledetekcyjnej zostały porównane z danymi o zasięgu oddziaływania leja depresji otrzymanymi z pomiarów naziemnych przez specjalistów z Kujawsko-Pomorskiego Ośrodka Badawczego Instytutu Technologiczno-Przyrodniczego w Falentach. Wyniki są obiecujące i dobrze dopasowują się do przebiegu zasięgu oddziaływania leja depresji. Umożliwia to stosowanie opisywanej metodyki do systematycznej klasyfikacji siedlisk łąkowych badanego terenu, przy niewielkich nakładach finansowych.
Mineral extraction in open-cast mines entails the necessity of dewatering mineral deposits. As a result of operations of a drainage system over a large area a depression cone of groundwater is formed which adversely affects the environment. Lowering of the groundwater table results in environmental changes which frequently could be irreversible. This situation is particularly evident in the case of hydrogenic habitats which by their nature are dependent on water. The range of the depression cone determined by measuring in piezometric wells does not always provide information on its actual impact on plant communities. This is caused by the high influence of the rooting depth of plants. The authors present a methodology for the classification of grassland areas in terms of moisture conditions and obtained preliminary results from the Szczercowska Valley influenced by the drainage system of the lignite mine GiEK PGE SA O / KWB Bełchatów. The analysis were made on the basis of Landsat 7 ETM+ images. The most important part of the described methods is the, so-called, triangle method which is used to calculate TVDI (ang. Temperature-dryness Vegetation Index) and zonal statistics. Corine Land Cover 2006 data was used as a source of land cover data. The results obtained by means of remote sensing methods were compared with the data describing the range of the influence of the depression cone obtained from field measurements performed by experts from the Kujawsko-Pomorskie Research Centre of the Institute of Technology and Life Sciences in Falenty. The results are promising and they coincide with the impact range of the depression cone established by field measurements. This allows to use the described methodology for systematic and inexpensive classification of grassland habitats in the studied area.
Źródło:
Roczniki Geomatyki; 2016, 14, 4(74); 521-529
1731-5522
2449-8963
Pojawia się w:
Roczniki Geomatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metod geostatystycznych do klasyfikacji ekosystemów leśnych przy użyciu technik satelitarnych
Use of geostatistical methods for classification of forest ecosystems using satellite imagery
Autorzy:
Zawadzki, J.
Ciszewski, C.J.
Zasada, M.
Powiązania:
https://bibliotekanauki.pl/articles/1023493.pdf
Data publikacji:
2004
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
zdjecia satelitarne
klasyfikacja
interpretacja
lasy
teledetekcja satelitarna
semiwariancja
lesnictwo
metody geostatystyczne
remote sensing
textural classification
geostatistics
spatial information
semivariance
semivariogram
Opis:
The role of textural information can be essential when analyzing remote images of forest ecosystems. Geostatistically based methods that use textural information are widely used in image processing. The role of geostatistical methods in analyzing remote sensing images of forest areas increased rapidly during the last several years following advancements in high−resolution remote−sensor technology. The results of numerous applications of geostatistical methods for processing remotely sensed forest images are very encouraging. This paper summarizes the geostatistical methods for remote sensing classification of forest ecosystems.
Źródło:
Sylwan; 2004, 148, 02; 36-51
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie lotniczej teledetekcji hiperspektralnej w klasyfikacji gatunkowej lasów strefy umiarkowanej
Airborne hyperspectral data for the classification of tree species a temperate forests
Autorzy:
Wietecha, M.
Modzelewska, M.
Stereńczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/987129.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
lesnictwo
strefa umiarkowana
teledetekcja
dane hiperspektralne
wykorzystanie
lasy
sklad gatunkowy
drzewa lesne
klasyfikacja
remote sensing
hyperspectral data
tree species classification
Opis:
The review focuses on use of airborne hyperspectral imagery in forest species classification. Studies mentioned in the review concern hyperspectral image classification with use of various methods. Only research, where study area is located in Europe or North America were selected. Articles were reviewed with respect to used pre−processing methods, methods of feature selection or feature extraction, algorithms of image classification and trees species which were classified. The whole process of acquiring and working with hyperspectral data is described. Different approaches (e.g. use or skip atmospheric corrections) were compared. In each article, various deciduous and conifer species were classified. Studies comparing several classification algorithms (Spectral Angle Mapper, Support Vector Machine, Random Forest) were mentioned. In most cases SVM gives the best results. Species, which are classified with the highest accuracy, include Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Broadleaved species are, in general, classified with lower accuracy than conifer ones. Within broadleaved trees, European beech (Fagus sylvatica) and oaks (Quercus sp.) are classified with the highest accuracy.
Źródło:
Sylwan; 2017, 161, 01; 3-17
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the suitability of selected image types in a texture analysis of satellite imagery
Przydatność wybranych typów obrazów w analizie tekstury zdjęć satelitarnych
Autorzy:
Kupidura, P.
Staniak, K.
Powiązania:
https://bibliotekanauki.pl/articles/132198.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
remote sensing
texture analysis
granulometric analysis
mathematical morphology
land cover classification
teledetekcja
analiza tekstury
analiza granulometryczna
morfologia matematyczna
klasyfikacja pokrycia terenu
Opis:
The article presents studies on the impact of the source image type on the efficacy of image texture analysis in the terms of distinguishing classes of land use or land cover (LULC). Single gray-scale images are usually the inputs for this type of operation, however their selection is not unambiguous, especially in the case of multispectral images. Two very high resolution satellite images were used in the study: Pleiades (GSD: 2 m) and QuickBird (2.4 m). Five different input images were tested: the original near-infrared and red bands, the images of the first two main components, and the image of the normalised difference vegetation index - NDVI. Five LULC classes were compared to each other: bare soil, low vegetation, deciduous forests, coniferous forests and built-up areas. Granulometric analysis, as the one of the high efficient methods of texture analysis, was used for the test. Research results have shown that the choice of source image for this kind of processing can be very important for the efficacy of distinguishing between different LULC classes. NDVI images, and also the near infrared band and the first principal component were found most useful.
Artykuł przedstawia badania dotyczące wpływu typu obrazu źródłowego na skuteczność analizy teksturowej obrazu z punktu widzenia wyodrębniania klas użytkowania lub pokrycia terenu (LULC). Tego typu operacjom poddawane są zazwyczaj pojedyncze obrazy w skali szarości, jednak ich wybór nie jest jednoznaczny, zwłaszcza w przypadku obrazów wielospektralnych. W badaniach wykorzystano dwa obrazy satelitarne o bardzo wysokiej rozdzielczości: Pleiades (GSD: 2 m) oraz QuickBird (2,4 m). Testowano pięć różnych obrazów wejściowych: oryginalne kanały bliskiej podczerwieni oraz czerwieni, obrazy dwóch pierwszych składowych głównych oraz obraz wskaźnika NDVI. Porównano wzajemnie pięć klas użytkowania lub pokrycia terenu: odkrytą glebę, niską roślinność, lasy liściaste, lasy iglaste oraz tereny zabudowane. Jako narzędzie testów wybrano analizę granulometryczną, jedną z metod analizy teksturowej o wysokiej skuteczności. Wyniki badań pokazały, że wybór obrazu źródłowego do przetworzeń może mieć bardzo duże znaczenie przy rozróżnianiu różnych klas użytkowania lub pokrycia terenu. Największą przydatnością cechowały się obrazy NDVI oraz kanału bliskiej podczerwieni i pierwszej składowej głównej.
Źródło:
Teledetekcja Środowiska; 2017, 57; 27-34
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu z wykorzystaniem obrazów Sentinel-2A przetworzonych za pomocą metody głównych składowych (PCA)
Land cover classification using Sentinel-2A images processed by the principal components method (PCA)
Autorzy:
Kałużna, Urszula
Będkowski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2058371.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
pokrycie terenu
EGiB
Sentinel-2A
PCA
nadzorowana klasyfikacja obrazu
remote sensing
land cover
Land and Buildings Register
supervised image classification
Opis:
Celem badań jest ocena możliwości realizacji klasyfikacji nadzorowanej z wykorzystaniem obrazów (komponentów) uzyskiwanych w wyniku przetworzenia oryginalnych obrazów Sentinel-2A za pomocą metody głównych składowych (PCA). Klasyfikację wykonano w ośmiu wariantach, z wykorzystaniem algorytmów najmniejszej odległości (MD, Minimum Distance) oraz największego prawdopodobieństwa (ML, Maximum Likelihood), przy czym zastosowano oryginalne kanały 2, 3, 4, 8 Sentinel-2A oraz różną liczbę komponentów. Wyniki klasyfikacji oceniono poprzez porównanie z danymi o pokryciu terenu według Ewidencji Gruntów i Budynków (EGiB). Przeprowadzenie klasyfikacji na ograniczonej do dwóch liczbie komponentów uzyskanych w procedurze PCA tylko nieznacznie zmieniło wyniki w porównaniu do klasyfikacji na oryginalnych, nieprzetworzonych kanałach Sentinel-2A. Najbardziej zbliżone do danych EGiB rezultaty uzyskano stosując klasyfikację ML kanałów oryginalnych, nieprzetworzonych lub używając wszystkich komponentów PCA. Podjęta próba porównania pokrycia terenu ustalonego za pomocą klasyfikacji obrazów satelitarnych z klasami pokrycia, które zostały wyodrębnione z mapy EGiB wykazała, że przetworzenie mapy z postaci wektorowej na rastrową wpływa istotnie na uzyskiwane wyniki.
The aim of the research is to assess the feasibility of supervised classification using images (components) obtained through processing the original Sentinel-2A images by means of the principal component method (PCA). The classification was performed in eight variants, using the algorithms of the minimum distance (MD) and the maximum likelihood (ML), with the original channels 2, 3, 4, 8 of Sentinel-2A and a various number of components. The results of the classification were assessed by comparing them to the land coverage data of Land and Buildings Register (Ewidencja Gruntów i Budynków – EGiB). Performing the classification on a number of PCA components limited to two only slightly altered the results compared to the classification on the original, raw Sentinel-2A channels. The results most similar to the EGiB data were obtained using the ML classification of the original channels, i.e. raw channels or using all PCA components. The attempt to compare the land coverage established by the classification of satellite images to the coverage classes that were extracted from the EGiB map revealed that processing the map from vector to raster form significantly influences the obtained results.
Źródło:
Teledetekcja Środowiska; 2020, 61; 19-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weryfikacja kompletności danych ogólnokrajowej Bazy Azbestowej metodami teledetekcyjnymi na przykładzie pruszkowskiej dzielnicy Żbików
Verification of completeness of data of the National Asbestos Database by remote sensing methods on the example of the Pruszków district of Żbików
Autorzy:
Ścisłowski, Ł.
Bielecki, A.
Powiązania:
https://bibliotekanauki.pl/articles/132375.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
azbest
baza azbestowa
obraz multispektralny
satelita WorldView2
teledetekcja
klasyfikacja nadzorowana
asbestos
asbestos database
multispectral images
WorldView2 satellite
remote sensing
supervised classification
Opis:
Poniższa praca weryfikuje kompletność danych zawartych w ogólnopolskiej Bazie Azbestowej przy użyciu technik teledetekcyjnych z wybranej części gminy miejskiej Pruszków. Podjęto próbę inwentaryzacji cementowo-azbestowych pokryć dachowych przy użyciu wysokorozdzielczych zobrazowań multispektralnych wykonanych przez sensory satelity WorldView 2. We wstępie przedstawiono krótką charakterystykę materiału, jakim jest azbest oraz opisano „Program Oczyszczania Kraju z Azbestu na lata 2009-2032”. Następnie zaprezentowano źródła danych użytych do przeprowadzonych analiz. W części praktycznej opisano metody przygotowania danych, a także proces przeprowadzenia klasyfikacji nadzorowanej, której wynikiem było wykrycie cementowo-azbestowych dachów. Pomimo, że wysokorozdzielcze i multikanałowe zobrazowania nie zawierają wartości odbić dla najodpowiedniejszych do wykrycia azbestu długości fal, otrzymane wyniki można uznać za satysfakcjonujące (np. do celów weryfikacji dokładności inwentaryzacji pokryć azbestowych dla jednostek samorządu terytorialnego). Wyniki przeprowadzonej inwentaryzacji zostały porównane z krajową Bazą Azbestu dla jednej z dzielnic Pruszkowa - Żbikowa. Otrzymano znaczące rozbieżności pomiędzy obiema inwentaryzacjami.
This study verifies the completeness of data contained in the national Asbestos Database, using remote sensing techniques in a selected area of Pruszków. The attempt was made to prepare an inventory of asbestos-cement roofs using the multi-spectral satellite imagery obtained from the high-resolution WorldView 2 satellite. In the introduction, a brief characteristic of the asbestos was presented and the National Asbestos Purification Program for 2009-2032 was described. Then, the sources of data used in the research were presented. The practical part presents the method of data preparation, and then, describes the process of conducting the supervised classification, which resulted in the detection of cement-asbestos roofing. Although the high-resolution and multi-channel WorldView-2 satellite does not record the best wavelength for the detection of asbestos covers, it led results that are satisfactory, e.g. for the purpose of monitoring the accuracy of inventory results carried out for the needs of local governments. The results of the conducted inventory were compared with the nationwide Asbestos Database for the Pruszków district - Żbików. There were significant discrepancies in the number of asbestos covered roofs that were inventoried.
Źródło:
Teledetekcja Środowiska; 2017, 56; 25-35
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie profilu morfologicznego i map granulometrycznych w wyodrębnianiu budynków na zdjęciach satelitarnycho bardzo dużej rozdzielczości
Morphological profile and granulometric maps in extraction of buildings in VHR satellite images
Autorzy:
Kupidura, P.
Skulimowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/130810.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
teledetekcja
klasyfikacja
morfologia matematyczna
granulometria
mapa granulometryczna
profil morfologiczny
tereny zabudowane
remote sensing
classification
mathematical morphology
granulometry
granulometric map
morphological profile
built-up areas
Opis:
Artykuł jest poświęcony badaniom możliwości wykorzystania metod analizy granulometrycznej: profilu morfologicznego oraz map granulometrycznych w wykrywaniu budynków na obrazach satelitarnych. Przedstawiono pokrótce podstawy teoretyczne analizy granulometrycznej obrazu i porównano dwie wykorzystywane w badaniach metody. Testy przeprowadzono na fragmencie sceny satelitarnej QuickBird – obrazie wielospektralnym, poddanym wyostrzeniu na podstawie obrazu panchromatycznego. Porównano 8 wariantów klasyfikacji, różniących się pod względem wykorzystywanych danych oraz zastosowanego modelu. Ocenę efektywności poszczególnych wariantów klasyfikacji oparto na analizie wartości współczynnika zgodności kappa oraz błędów nadmiaru i pominięcia. Uzyskane wyniki wskazują na istotny potencjał zaproponowanych metod, natomiast analiza zaobserwowanych niedoskonałości pozwala określić kierunki ich rozwoju.
The article is focused on the analysis of possibilities of using granulometric analysis methods: the morphological profile, and granulometric maps in detecting buildings on satellite images. It briefly explains the theoretical basis for granulometric analysis of image and compares two methods used in research. Tests were carried out on a fragment of QuickBird satellite scene – pansharpened multispectral image. 8 variants of classification differing in terms of the data and the model of classification were compared. Evaluation of the effectiveness of the different options for classification based on the analysis factor kappa values and omission and commission errors. The results indicate the significant potential of the proposed methods, and analysis of the observed imperfections allows to specify the possible fields of their development.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 83-96
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczenie pola powierzchni i długości obiektów w półautomatycznej klasyfikacji obiektowej użytków zielonych na zdjęciach satelitów serii LANDSAT
The influence of area and length of objects in semi-automated object classification of grasslands on LANDSAT images
Autorzy:
Kosiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/132243.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
użytki zielone
teledetekcja
Landsat
wielkość
kształt
uwilgotnienie
siedlisko
klasyfikacja
sztuczne sieci neuronowe
grasslands
remote sensing
size
shape
habitat
humidity
object
classification
artificial neural network
Opis:
Semi-automatic method for object classification of the grassland procedure involves two stages: 1) the creation of image segments as a representation of natural spatial complexes, 2) classification of the segments. So far, the classification algorithms were used refer to the three categories of characteristics: spectral, panchromatic or geometric. In the first stage of the work segmentation were performed of the composition of the two satellite images Landsat7 acquired at different seasons of the year: in September 1999 and the beginning of May 2001. Panchromatic data were used for distinguishing complexes due to the greater (in comparison with spectral data) spatial resolution. In the area of grasslands landscape-vegetation complexes (Matuszkiewicz, 1990, Kosiński, Hoffmann -Niedek, Zawiła, 2006) were distinguished of approximately a hundred to a few hundred meters in length and of about 20 ÷ 200 panchromatic image pixels. Semi-automated delimitation of complexes were carried out under the visual control, using as auxiliary material aerial photographs and topographic maps. In the second stage (classification of segments) an attempt were taken to assess the suitability of selected geometrical features to distinguish grasslands in use (currently or potentially) from grasslands unfit for production use due to excessive or insufficient moisture. The classification algorithm used GIS tools for measuring area and length of segments and artificial neural networks as a tool for classification. The previous studies of the Piotrkowska Plain show that the complexes of meadows used differ from those abandoned in terms of size and shape of objects (Kosiński, Hoffmann- Niedek, 2006, Fig. 1). Hypothesis that area and length of the landscape -vegetation complex are cues of identification in relation to the use and moisture of grasslands. 43 complexes of the grassland have been established as training samples on the Piotrkowska Plain in the Pilsia valley. In order to avoid overfitting classification algorithm to data from the Piotrkowska Plain, in order to allow the application of the algorithm for another mezoregionu 10 complexes have been selected as a validation set in the Szczercowska valley. To evaluate the classification results 32 complexes have been collected from Szczercowska Basin (test set). All treining set objects were described in terrein. Validation and test set objects were classified by a more accurate metod (based on biteporal image: Kosiński, Hoffmann -Niedek, 2008) and checked at random in the field. Objects of learning, validation and test set have been grouped into five categories according to use and habitat moisture (Kosiński, Hoffmann -Niedek, 2008; Table 1). For learning neural networks fife categories of objects of the learning and validation set were generalised into the three classes. In the Szczercowska Valley combination of characteristics (area and length) of the abandoned complexes is more close to the meadows in use than on the Piotrkowska Plain (Table 2). Therefore, the classification algorithm of the Piotrkowska Plain can not be directly applied to Szczercowska Basin. To obtain the correct result of classification, the classes of test set has been interpreted differently than in the learning and validation sets (Table 3, Figure 2). In the test sample 3/4 of the 23 complexes of meadows potentially used were classified correctly, while of nine abandoned ones due to unfavorable moisture habitats correctly classified 2/3. Thus confirmed the working hypothesis. Application of artificial neural networks can cancel the designation of non parametric empirical indicators of the size and shape of the complexes (Fig. 1). Neural networks auto-uwilgotmatically builds a morpfometric model based on simple indicators such as area and length of the object. Two model types of artificial neural network have been tested: 1) multilayer perceptrons (MLP) wich use hyperplanes to divide up feature space, 2) radial basis function network (RBF) wich use hyperspheres. MLP networks have proved to be more suitable to build the model than the RBF network.
Źródło:
Teledetekcja Środowiska; 2009, 42; 35-41
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapping of impervious surfaces with the use of remote sensing imagery: Support Vector Machines classification and GIS-based approach
Wizualizacja powierzchni nieprzepuszczalnych z wykorzystaniem zdjęć teledetekcyjnych: klasyfikacja support vector machines i podejście oparte na GIS
Autorzy:
Sobieraj, Janusz
Fernández Marín, Marcos
Metelski, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/27312146.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
klasyfikacja
powierzchnia nieprzepuszczalna
maszyna wektorów nośnych
teledetekcja
system informacji geograficznej
użytkowanie gruntów pokrycie gruntów
ArcGIS
uczenie maszynowe
classification
impervious surface
support vector machine
remote sensing
geographic information system
land use land cover
machine learning
Opis:
This study focuses on the problem of mapping impervious surfaces in urban areas and aims to use remote sensing data and orthophotos to accurately classify and map these surfaces. Impervious surface indices and green space assessments are widely used in land use and urban planning to evaluate the urban environment. Local governments also rely on impervious surface mapping to calculate stormwater fees and effectively manage stormwater runoff. However, accurately determining the size of impervious surfaces is a significant challenge. This study proposes the use of the Support Vector Machines (SVM) method, a pattern recognition approach that is increasingly used in solving engineering problems, to classify impervious surfaces. The research results demonstrate the effectiveness of the SVM method in accurately estimating impervious surfaces, as evidenced by a high overall accuracy of over 90% (indicated by the Cohen’s Kappa coefficient). A case study of the “Parkowo-Leśne” housing estate in Warsaw, which covers an area of 200,000 m², shows the successful application of the method. In practice, the remote sensing imagery and SVM method allowed accurate calculation of the area of the surface classes studied. The permeable surface represented about 67.4% of the total complex and the impervious surface corresponded to the remaining 32.6%. These results have implications for stormwater management, pollutant control, flood control, emergency management, and the establishment of stormwater fees for individual properties. The use of remote sensing data and the SVM method provides a valuable approach for mapping impervious surfaces and improving urban land use management.
Niniejsze badanie koncentruje się na problemie wyznaczania powierzchni nieprzepuszczalnych na obszarach miejskich i ma na celu wykorzystanie danych teledetekcyjnych i ortofotomap do dokładnej klasyfikacji i wizualizacji tych powierzchni. Wskaźniki powierzchni nieprzepuszczalnych i oceny terenów zielonych są szeroko stosowane w planowaniu przestrzennym i urbanistycznym do oceny środowiska miejskiego. Władze lokalne polegają również na oszacowaniu wielkości powierzchni nieprzepuszczalnych w celu obliczania opłat za wodę deszczową i skutecznego zarządzania odpływem wody deszczowej. Jednak dokładne określenie wielkości nieprzepuszczalnych powierzchni jest poważnym wyzwaniem. W niniejszym badaniu zaproponowano wykorzystanie metody Support Vector Machines (SVM), podejścia opartego na rozpoznawaniu wzorców, które jest coraz częściej stosowane w rozwiązywaniu problemów inżynieryjnych, do klasyfikacji powierzchni nieprzepuszczalnych. Wyniki badań pokazują skuteczność metody SVM w dokładnym szacowaniu powierzchni nieprzepuszczalnych, o czym świadczy wysoka ogólna precyzja wynosząca ponad 90% ( na co wskazuje współczynnik Kappa Cohena). Studium przypadku osiedla „Parkowo-Leśne” w Warszawie o powierzchni 200 000 m² pokazuje skuteczne zastosowanie metody. Wyniki wskazują, że powierzchnie przepuszczalne stanowiły około 67,4% całego kompleksu, podczas gdy powierzchnie nieprzepuszczalne stanowiły pozostałe 32,6%. Wyniki te mogą mieć wpływ na zarządzanie wodami opadowymi, kontrolę zanieczyszczeń, zapobieganie powodziom, zarządzanie kryzysowe i ustalanie opłat za wodę opadową dla poszczególnych nieruchomości. Wykorzystanie danych teledetekcyjnych i metody SVM zapewnia cenne podejście do wizualizacji powierzchni nieprzepuszczalnych i poprawy zarządzania użytkowaniem gruntów miejskich.
Źródło:
Archives of Civil Engineering; 2023, 69, 3; 129--146
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies