Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rare elements" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
The recycling-oriented material characterization of hard disk drives with special emphasis on NdFeB magnets
Autorzy:
Dańczak, A.
Chojnacka, I.
Matuska, S.
Marcola, K.
Leśniewicz, A.
Wełna, M.
Żak, A.
Adamski, Z.
Rycerz, L.
Powiązania:
https://bibliotekanauki.pl/articles/109315.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
hard disk drives
rare earth elements
permanent magnets
recycling
Opis:
Hard disk drives (HDDs) consist of many components made from various materials: e.g. aluminum, steel, copper and rare earth elements (REEs). Recycling and reuse of these materials is desirable for economic and environmental reasons. Developing of potential HDDs recycling methods requires knowledge about HDDs material characteristic. The study aims to explore knowledge about structure and chemical composition of HDDs main components with special emphasis on NdFeB magnets. HDDs collected for the experiments came from Desktop PCs and Notebooks. The dependence between the average mass of HDDs components and such parameters as producer, year and country of production and disk capacity was analyzed. Chemical composition of NdFeB magnets and the heaviest components (i.e. top cover, mounting chassis, platters and metallic plates from magnet assembly of actuator) was analyzed by various analytical methods. The heaviest HDDs main components: top cover and mounting chassis, with the highest recycling potential, are made of aluminum and steel respectively. The majority of HDDs components showed also the existence of different alloy additions: C, Mg, Si, P, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sn and Pb. NdFeB magnets constitute 2.2 ± 1.1% of the average HDD from Desktop PC (517.3 ± 64.2 g) and 3.2 ± 1.2% from Notebook (108.2 ± 24.3 g). The chemical composition of NdFeB magnets from collected HDDs changes in the wide range: Fe (53–62%), Nd (25–29%), Pr (2–13%), Dy (0.1– 1.4%), Ni (2–6%), Co (0.5–3.6%), B (0.8–1.0%). Recycling of permanent magnets based on NdFeB alloys is potential remedy to fill the gap in the supply of rare earth elements on the global REEs market.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 2; 363-376
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Magnet Scrap Size on the Extraction Behavior of Heavy Rare Earth Elements by Liquid Metal Extraction
Autorzy:
Nam, Sun-Woo
Rasheed, Mohammad Zarar
Park, Sang-Min
Lee, Sang-Hoon
Kim, Do-Hyang
Kim, Taek-Soo
Powiązania:
https://bibliotekanauki.pl/articles/355705.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
liquid metal extraction
rare earth elements
recycling
oxidation
magnet scrap
Opis:
Liquid metal extraction (LME) process results in 100% neodymium (Nd) extraction but the highest extraction efficiency reportedfor Dysprosium (Dy) so far is 74%. Oxidation of Dy is the major limiting factor for incomplete Dy extraction. In order to enhance the extraction efficiency and to further investigate the limiting factors for incomplete extraction, experiments were carried out on six different particle sizes of under 200 μm, 200-300 μm, 300-700 μm, 700-1000 μm, 1000-2000 μm and over 2000 μm at 900°C with magnesium-to-magnet scrap ratio of 15:1 for 6, 24 and 48 hours, respectively. This research identified Dy2 Fe17 in addition toDy2 O3 phase to be responsible for incomplete extraction. The relationship between Dy2 Fe17 and Dy2O3 phase was investigated, and the overall extraction efficiency of Dy was enhanced to 97%.
Źródło:
Archives of Metallurgy and Materials; 2020, 65, 4; 1273-1276
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Processes and technologies for the recycling of spent fuorescent lamps
Autorzy:
Kujawski, W.
Pospiech, B.
Powiązania:
https://bibliotekanauki.pl/articles/780020.pdf
Data publikacji:
2014
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
fluorescent lamps
recycling
rare earth elements (REE)
hydrometallurgical process
pyrometallurgical
process
solvent extraction
leaching
Opis:
The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs) such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fluorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.
Źródło:
Polish Journal of Chemical Technology; 2014, 16, 3; 80-85
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Purification And Separation Of Rare Earth Elements From CCFL With Extraction Chromatography
Oczyszczanie i separacja metali ziem rzadkich z lamp fluorescencyjnych z zimną katodą (CCFL) przy użyciu chromatografii ekstrakcji
Autorzy:
Kim, J. G.
Powiązania:
https://bibliotekanauki.pl/articles/352470.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
extraction chromatography
CCFL
rare earth elements (REE)
amberite
recycling
chromatografia ekstrakcyjna
pierwiastki ziem rzadkich
recykling
Opis:
In this study, Amberite XAD-7HP was used as the solvent-impregnated resin to separate each REE from the standard solution, which was mixed with the REEs (e.g., La Eu, Tb, Y and Ba). About 100 ppm of each of the REEs was separated from DI water using extraction chromatography. REEs were separated by extraction chromatography using Amberite XAD-7HP resin, the changes in the pH values of the HCl and HClO4 were between 0.2 N and 5 N, and the extraction rate of the solution was between 0.5 and 3 ml/min. The La solution with the separated REEs was leached. The solid-state REEs were annealed between 1083K. The extraction result was analyzed with ICP-AES and an X-ray diffractometer. Each REE was successfully separated with HCl and HClO4 with pH values between 0.1 N and 3 N and with extraction rate between 1.0 m/min and 3.0 m/min.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 2B; 1529-1533
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Environmental and Legal Conditions of Rare Earth Elements
Autorzy:
Spasowska-Czarny, Hanna
Powiązania:
https://bibliotekanauki.pl/articles/618731.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
rare earth elements (REEs)
critical raw materials
recovery
recycling
low-carbon economy
energy-efficient technology
metale ziem rzadkich
surowce krytyczne
odzysk
recykling
gospodarka niskoemisyjna
technologia energooszczędna
Opis:
To run an efficient and well developed economy, it is necessary to procure materials and elements belonging to four main groups, that is energy resources, organic resources, water and mineral resources. Non-energy resources, including critical raw materials, have limited resource base, significant dispersal of minerals and very limited possible substitution. Those resources include rare earth elements, which set directions for contemporary dynamic development of many industries. With the development of innovative technologies, the demand for essential components has grown. The use of rare earth elements to develop energy-efficient technologies is very promising, especially in wind generators and hybrid cars.
Do wydajnego funkcjonowania i rozwoju każdej gospodarki niezbędne są surowce należące do czterech głównych grup. Są to surowce energetyczne, surowce organiczne, woda i surowce mineralne. Surowce nieenergetyczne (w tym tzw. surowce krytyczne) cechują się ograniczoną bazą surowcową i znacznym rozproszeniem minerałów oraz bardzo ograniczonymi możliwościami substytucji. Do tych surowców zaliczane są pierwiastki ziem rzadkich, które wyznaczają kierunki nowoczesnego, dynamicznego rozwoju różnych gałęzi przemysłu. Wraz z rozwojem nowoczesnych technologii wzrosło zapotrzebowanie na komponenty niezbędne do ich rozwijania i wytwarzania. Bardzo obiecujące jest wykorzystanie metali ziem rzadkich w technologiach związanych z rozwojem gospodarki niskoemisyjnej, zwłaszcza w turbinach wiatrowych i samochodach hybrydowych.
Źródło:
Studia Iuridica Lublinensia; 2020, 29, 1
1731-6375
Pojawia się w:
Studia Iuridica Lublinensia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies