Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rainbow colouring" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Bounds for the rainbow connection number of graphs
Autorzy:
Schiermeyer, Ingo
Powiązania:
https://bibliotekanauki.pl/articles/743926.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
rainbow colouring
rainbow connectivity
extremal problem
Opis:
An edge-coloured graph G is rainbow-connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow-connected. In this paper we show some new bounds for the rainbow connection number of graphs depending on the minimum degree and other graph parameters. Moreover, we discuss sharpness of some of these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 387-395
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rainbow Connectivity of Cacti and of Some Infinite Digraphs
Autorzy:
Alva-Samos, Jesús
Montellano-Ballesteros, Juan José
Powiązania:
https://bibliotekanauki.pl/articles/31341981.pdf
Data publikacji:
2017-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
rainbow connectivity
cactus
arc colouring
Opis:
An arc-coloured digraph D = (V,A) is said to be rainbow connected if for every pair {u, v} ⊆ V there is a directed uv-path all whose arcs have different colours and a directed vu-path all whose arcs have different colours. The minimum number of colours required to make the digraph D rainbow connected is called the rainbow connection number of D, denoted rc⃗ (D). A cactus is a digraph where each arc belongs to exactly one directed cycle. In this paper we give sharp upper and lower bounds for the rainbow connection number of a cactus and characterize those cacti whose rainbow connection number is equal to any of those bounds. Also, we calculate the rainbow con- nection numbers of some infinite digraphs and graphs, and present, for each n ≥ 6, a tournament of order n and rainbow connection number equal to 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 2; 301-313
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies