Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k -rainbow index" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Graphs with 3-Rainbow Index n − 1 and n − 2
Autorzy:
Li, Xueliang
Schiermeyer, Ingo
Yang, Kang
Zhao, Yan
Powiązania:
https://bibliotekanauki.pl/articles/31339126.pdf
Data publikacji:
2015-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
rainbow S-tree
k-rainbow index
Opis:
Let $G = (V(G),E(G))$ be a nontrivial connected graph of order $n$ with an edge-coloring $c : E(G) → {1, 2, . . ., q}, q ∈ \mathbb{N}$, where adjacent edges may be colored the same. A tree $T$ in $G$ is a rainbow tree if no two edges of $T$ receive the same color. For a vertex set $S ⊆ V (G)$, a tree connecting $S$ in $G$ is called an $S$-tree. The minimum number of colors that are needed in an edge-coloring of $G$ such that there is a rainbow $S$-tree for each $k$-subset $S$ of $V(G)$ is called the $k$-rainbow index of $G$, denoted by $rx_k(G)$, where $k$ is an integer such that $2 ≤ k ≤ n$. Chartrand et al. got that the $k$-rainbow index of a tree is $n−1$ and the $k$-rainbow index of a unicyclic graph is $n−1$ or $n−2$. So there is an intriguing problem: Characterize graphs with the $k$-rainbow index $n − 1$ and $n − 2$. In this paper, we focus on $k = 3$, and characterize the graphs whose $3$-rainbow index is $n − 1$ and $n − 2$, respectively.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 1; 105-120
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs with 4-Rainbow Index 3 and n − 1
Autorzy:
Li, Xueliang
Schiermeyer, Ingo
Yang, Kang
Zhao, Yan
Powiązania:
https://bibliotekanauki.pl/articles/31339468.pdf
Data publikacji:
2015-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
rainbow S-tree
k-rainbow index
Opis:
Let $G$ be a nontrivial connected graph with an edge-coloring $ c : E(G) \rightarrow $ $ {1, 2, . . ., q}, $ $q \in \mathbb{N} $, where adjacent edges may be colored the same. A tree $T$ in $G$ is called a rainbow tree if no two edges of $T$ receive the same color. For a vertex set $ S \subseteq V (G) $, a tree that connects $S$ in $G$ is called an $S$-tree. The minimum number of colors that are needed in an edge-coloring of $G$ such that there is a rainbow $S$-tree for every set $S$ of $k$ vertices of $V (G)$ is called the $k$-rainbow index of $G$, denoted by $ r x_k (G) $. Notice that a lower bound and an upper bound of the $k$-rainbow index of a graph with order $n$ is $k − 1$ and $n − 1$, respectively. Chartrand et al. got that the $k$-rainbow index of a tree with order $n$ is $n − 1$ and the $k$-rainbow index of a unicyclic graph with order $n$ is $n − 1$ or $n − 2$. Li and Sun raised the open problem of characterizing the graphs of order $n$ with $r x_k (G) = n − 1$ for $ k \ge 3 $. In early papers we characterized the graphs of order $n$ with 3-rainbow index 2 and $n − 1$. In this paper, we focus on $k = 4$, and characterize the graphs of order $n$ with 4-rainbow index 3 and $n − 1$, respectively.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 2; 387-398
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies