Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "PDEs" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Boundary layer homogenization for periodic oscillating boundaries
Autorzy:
Habbal, A.
Powiązania:
https://bibliotekanauki.pl/articles/205717.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
okresowe wahania graniczne
równanie różniczkowe cząstkowe
warstwa graniczna
boundary layer
PDEs
periodic oscillating boundaries
Opis:
The paper is devoted to the study of the boundary layer behaviour of solutions to partial differential equations occurring in domains with periodic oscillating boundaries, the frequency and the amplitude of the oscillations being the same. First, the transport method, a classical one from the optimal design theory, is used in order to state the problem in a fixed domain ; then, an adapted two-scale boundary layer convergence is developed. Apart from this new hybrid approach, the main difference with related works is consideration of a bounded unit-cell, yielding a simple functional framework. Convergence, as well as a homogenized equation for the first order boundary layer term are given, and a first order corrector result is proved. This a priori boundingg is very well suited to problems of control, and to numerical implementation considerations. The difficulty in obtaining higher order correctors due to the bounding of the unit-cell is finally discussed.
Źródło:
Control and Cybernetics; 2001, 30, 3; 279-301
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inverse shape optimization problems and application to airfoils
Autorzy:
Desideri, J.-A.
Zolesio, J.-P.
Powiązania:
https://bibliotekanauki.pl/articles/970144.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
równanie różniczkowe cząstkowe
metody obliczeniowe
optymalizacja kształtu
rachunek wariacyjny
Partial-Differential Equations (PDEs)
computational methods
shape optimization
calculus of variations
Opis:
We consider a set of parameterized planar arcs (x(t), y(t)) (0 1. We first prove the strict convexity of the functional for alpha > 2. Under the less stringent condition alpha > 1, we derive the stationarity condition and the formal expression for the Hessian, and prove that if a point exists at which the functional is stationary w.r.t. variations in y = y(t), for fixed x = x(t), then it is unique and realizes a global minimum; the functional is then unimodal. We also observe that the stationarity condition (Euler-Lagrange quation) is an integral-differential equation depending only on the arc shape and not on the parameterization per se, which gives the variational problem a certain intrinsic character. Then, we solve the inverse problem: given an admissible parameterized arc, we construct a smooth weighting function omega(t) for which the stationarity condition is satisfied, thus making the functional unimodal, and derive certain asymptotics. A numerical example pertaining to optimum-shape design in aerodynamics is computed for illustration.
Źródło:
Control and Cybernetics; 2005, 34, 1; 165-202
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies