Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gryz, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Narażenie na pole elektromagnetyczne w przestrzeni pracy podczas użytkowania urządzeń do magnetoterapii lub magneto stymulacji : metoda pomiaru pola elektromagnetycznego in situ – wymagania szczegółowe
Exposure to the electromagnetic field in the work space during the use of magnetotherapy or magnetostimulation devices : the method of in situ measurements of electromagnetic field–specific requirements
Autorzy:
Karpowicz, J.
Aniołczyk, H.
Bieńkowski, P.
Gryz, K.
Kieliszek, J.
Politański, P.
Zmyślony, M.
Zradziński, P.
Powiązania:
https://bibliotekanauki.pl/articles/138347.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
magnetoterapia
magnetostymulacja
pole magnetyczne
pomiary pola elektromagnetycznego
metoda rekomendowana
środowisko pracy
bezpieczeństwo i higiena pracy
zdrowie publiczne
magnetotherapy
magnethostimulation
magnetic field
electromagnetic field measurements
recommended method
work environment
occupational safety and health
public health
Opis:
W prawie pracy określono obowiązek rozpoznania i oceny zagrożeń elektromagnetycznych w otoczeniu urządzeń i instalacji emitujących pole elektromagnetyczne (pole-EM). W rozporządzeniu Ministra Rodziny, Pracy i Polityki Społecznej z dnia 29 czerwca 2016 r. w sprawie bezpieczeństwa i higieny pracy przy pracach związanych z narażeniem na pole-EM wśród typowych źródeł pola-EM wymieniono „urządzenia do magnetoterapii” (DzU 2016, poz. 950, zał. 1., poz. 10., zm. poz. 2284). Urządzania do magnetoterapii są wykorzystywane do łagodzenia różnych dolegliwości, z wykorzystaniem oddziaływania quasi-statycznego pola-EM. Podczas zabiegu w pobliżu aktywnych aplikatorów występuje pole-EM stref ochronnych. W związku z tym, warunki narażenia pracujących podczas użytkowania aplikatorów wymagają okresowej kontroli, wykonanej „zgodnie z metodami określonymi w Polskich Normach, a w przypadku braku takich norm, metodami rekomendowanymi i zwalidowanymi” zgodnie z wymaganiami zawartymi w rozporządzeniu Ministra Zdrowia z dnia 2 lutego 2011 r. w sprawie badań i pomiarów czynników szkodliwych dla zdrowia w środowisku pracy (DzU 2011, poz. 166), celem rozpoznania zagrożeń elektromagnetycznych i podjęcia odpowiednich środków ochronnych (DzU 2016, poz. 950, zm. poz. 2284). Metody pomiarów pola-EM w zakresie koniecznym do realizacji wspomnianych wymagań nie są obecnie znormalizowane, w związku z tym, celem relacjonowanej pracy było opracowanie metody rekomendowanej do pomiaru parametrów pola-EM in situ w przestrzeni pracy, podczas użytkowania urządzeń do magnetoterapii lub magnetostymulacji. Na podstawie wyników przeprowadzonych badań wykazano, że podczas zabiegu fizyko-terapeutycznego źródłem pola-EM jest jedynie aplikator do magnetoterapii lub magnetostymulacji. W przypadku wykorzystywania pola-EM o częstotliwości podstawowej do 100 Hz o sinusoidalnym lub niesinusoidalnym przebiegu ciągłym – przemiennym lub prostowanym (tj. ze składową stałą), zasięg pola-EM stref ochronnych jest determinowany przez rozkład przestrzenny quasi-statycznego pola magnetycznego (pola-M). Ponieważ tego typu urządzenia przeważają w polskich placówkach fizykoterapeutycznych, do oceny zagrożeń elektromagnetycznych w przestrzeni pracy rekomendowano użycie uproszczonej metody pomiarów. Polega ona na pomiarze wartości skutecznej (RMS) na-tężenia pola-M w sinusoidalnym trybie pracy urządzenia. W ocenie wyników w takim przypadku uwzględnia się limity narażenia określone w prawie pracy w stosunku do wartości równoważnych natężenia pola-M przez użycie odpowiedniego współczynnika korekcyjnego, odzwierciedlającego konieczność zaostrzonej oceny narażenia przy niesinusoidalnym trybie pracy urządzenia (tj. użycie limitów określonych dla pola-EM o częstotliwości 100 Hz). W przypadku urządzeń emitujących pole-EM o częstotliwościach z zakresu kiloherców (kHz) lub pola-EM o impulsowej charakterystyce zarekomendowano stosowanie bardziej złożonych pomiarów, obejmujących indywidualne rozpoznanie charakterystyk mierzonego pola-EM i określenie współczynników korekcyjnych do interpretacji wyników pomiarów wartości skutecznej na podstawie charakterystyk metrologicznych stosowanych przyrządów pomiarowych. W metodzie określono również zasady: przygotowania pomiarów i aparatury pomiarowej, wyboru punktów pomiarowych, wyznaczania zasięgu stref ochronnych oraz dokumentowania wyników pomiarów. Omówiono również najistotniejsze źródła niepewności wyników pomiaru pola-EM w przestrzeni pracy przy omawianych urządzeniach.
Labour law defines the obligation to identify and evaluate electromagnetic hazards in the vicinity of equipment and installations emitting an electromagnetic field (EM-field). Following the regulation of ministry of labour which set the provisions regarding the safety and health in EM-field, the "devices for magnetotherapy" have been mentioned among the typical sources of an EM-field (OJ 2016 items 950 and 2284, Annex 1, item 10). Magnetotherapy devices are used to alleviate various diseases, using the influence of aquasistatic EM-field. The protective zones of the EM-field are present near the active applicators during the treatment, so the conditions of exposure of personnel present nearby during the use of the applicators require a periodic inspection made "according to the methods specified in the Polish Standards, and in the absence of such standards, by recommended and validated methods according to the provisions of regulation of ministry of health (Regulation...,Journal of Laws2011, item 166), in order to identify electromagnetic hazards and to take appropriate protective measures (OJ 2016 item 950and 2284).The methods of measuring the EM-field to the extent necessary to meet the serequirements are currently not standardised; therefore, the aim of the presented work was to develop a recommended method for measuring the parameters of the EM-field in-situin the work space while using magnetotherapy or magneto stimulation devices.The recommended measurement method is based on detailed investigations on the characteristics of exposure to the EM-field surrounding typical magnetotherapy devices operated in Poland: by approx. 700 applicators of 500 devices (such as Magnetronic (series MF-10, MF-12, MF 20 and BTL), Magnetus (series 2 and 2.26), Magnoter (series D-56, D56A BL), Magner LT, Magner Plus, Magneris, MAG magnetic, Magnetic, Astar ABR).The oscilloscopic identification, the characteristics of variability in the time of the EM-field emitted by devices for magnetotherapy and magneto stimulation, and the measurements of the spatial distribution of the EM-field in the workspace by devices have been worked out. Based on the results of the study, it was shown that, during physiotherapy treatment, only the applicator for magnetotherapy or magneto stimulation is the source of the EM-field. When using an EM-field with a frequency of up to 100 Hz and a continuous sinusoidal or non-sinusoidal waveform –alternating or rectified (i.e. with a constant component) –the range of protective zones of EM-field is deter-mined by the spatial distribution of the quasi-static magnetic field (M-field). Because this type of device predominates in Polish physiotherapy centres, to assess electromagnetic hazards in the workspace, it was recommended to use a simplified method of measurement, involving the measurement of the root-mean-square (RMS) value of the M-field strength in sinusoidal operation mode and an evaluation of results, taking into account the limits reflect-ing the measures of exposure specified in the labour law in relation to the equivalent value of the M-field strength, but using an appropriate correction factor reflecting the need to strengthen the exposure evaluation at non-sinusoidal modes of operation (i.e. by the use of limits set for EM-field of 100 Hz frequency). In the case of devices emitting an EM-field with frequencies in the kilohertz (kHz) range or a pulsed EM-field, it was recommended to use more complex measurements, including an individual analysis of the characteristics of the measured EM-field and a determination of correction factors to the interpretation of the measured RMS value (based on the metrological characteristics of measuring devices used). The method also sets out principles for: measurements and measurement devices preparation, locating the measurement points, determining the range of protection zones and documenting the measurement results. The most important sources of uncertainty concerning EM-field measurements in the workspace near magnetotherapy or magnetic stimulation applicators were also discussed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 4 (90); 151-180
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Environmental safety aspects of using UHF RFID systems in hospitals
Aspekty środowiskowego bezpieczeństwa wykorzystania systemów UHF RFID w szpitalach
Autorzy:
Zradziński, Patryk
Karpowicz, Jolanta
Gryz, Krzysztof
Suarez, Oscar J.
Trillo, Angeles M.
Hernandez, Jose A.
Miguel-Bilbao de, Silvia
Suarez, Samuel D.
Celaya-Echarri, Mikel
Azpilicueta, Leyre
Falcone, Francisco
Ramos, Victoria
Powiązania:
https://bibliotekanauki.pl/articles/2146754.pdf
Data publikacji:
2020
Wydawca:
Indygo Zahir Media
Tematy:
biomedical engineering
environmental engineering
occupational exposure
public health
AIMD
Internet of things
inżynieria biomedyczna
inżynieria środowiska
narażenie zawodowe
zdrowie publiczne
internet rzeczy
Opis:
Various applications of Radio Frequency IDentification (RFID) technology in the medical environment are characterised. The electromagnetic field (EMF) emitted by RFID handheld readers (RFID guns) is characterised and evaluated with respect to humans exposure metrics – the strength of the electric field affecting anyone present near various UHF (ultra-high frequency) RFID guns and the specific absorption rate (SAR) values in their body. UHF RFID systems are the most popular of such systems used in hospitals. The performed studies indicate that the EMF exposure level near the RFID gun antenna and SAR values (a measure of the thermal effects of EMF exposure) caused by exposure from the RFID reader may exceed the limits of the electric field and SAR issued by international guidelines or legislation. Potentially excessive exposure to EMF emitted by UHF RFID readers is not limited to the user of the device, but may also apply to patients or bystanders. Only UHF RFID guns with an EMF emission lower than 1 W may be considered as an insignificant source of human exposure. The use of readers with a radiated power exceeding 1 W requires the evaluation of the EMF level using measurements, and also the evaluation of SAR by numerical modelling in the case of their use in close proximity to humans. In all cases, insufficient electromagnetic immunity of electronic devices (including medical implants) should be considered near RFID guns at least up to half of the reading range away from the RFID reader. The electromagnetic hazards related to the use of RFID guns may be limited by relevant preventive measures, as shown in this paper, together with the principles of an in-situ evaluation of electromagnetic hazards near the UHF RFID guns.
Scharakteryzowano różne zastosowania technologii identyfikacji radiowej (RFID) w środowisku medycznym. Pole elektromagnetyczne emitowane przez ręczne czytniki RFID (RFID guns) zostało scharakteryzowane i ocenione w odniesieniu do miar narażenia ludzi – natężenia pola elektrycznego oddziałującego na osoby znajdujące się w pobliżu różnych czytników RFID UHF (ultrawysokiej częstotliwości) i współczynnika SAR w ich ciele. System UHF RFID jest najpopularniejszym z systemów RFID użytkowanych m.in. w szpitalach. Przeprowadzone badania wskazują, że poziom ekspozycji na pole elektromagnetyczne w pobliżu anteny ręcznego czytnika RFID i wartości SAR (miara skutków termicznych oddziaływania pola elektromagnetycznego) spowodowane tą ekspozycją mogą przekraczać limity, opublikowane w zleceniach międzynarodowych lub przepisach. Nadmierna ekspozycja na pole elektromagnetyczne emitowane przez czytniki RFID UHF może dotyczyć nie tylko użytkownika urządzenia, ale również pacjenta lub osoby postronnej. Tylko ręczne czytniki RFID UHF o emisji pola elektromagnetycznego poniżej 1 W można uznać za nieistotne źródło narażenia ludzi. Korzystanie z czytników o mocy przekraczającej 1 W wymaga oceny poziomu pola elektromagnetycznego za pomocą pomiarów, a również oceny SAR za pomocą modelowania numerycznego w przypadku ich użycia w bezpośredniej bliskości ludzi. We wszystkich przypadkach niewystarczającą odporność elektromagnetyczną urządzeń elektronicznych (w tym implantów medycznych) należy rozważyć w pobliżu czytników RFID co najmniej do odległości od czytnika RFID równej połowie jego zasięgu odczytu. Zagrożenia elektromagnetyczne związane z używaniem ręcznych czytników RFID mogą być ograniczone przez odpowiednie środki ochronne, jak pokazano w tym artykule, wraz z zasadami oceny zagrożeń elektromagnetycznych in-situ w pobliżu ręcznych czytników UHF RFID.
Źródło:
Inżynier i Fizyk Medyczny; 2020, 9, 2; 133--140
2300-1410
Pojawia się w:
Inżynier i Fizyk Medyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies