Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Edge computing" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Cooperative adaptive driving for platooning autonomous self driving based on edge computing
Autorzy:
Chang, Ben-Jye
Hwang, Ren-Hung
Tsai, Yueh-Lin
Yu, Bo-Han
Liang, Ying-Hsin
Powiązania:
https://bibliotekanauki.pl/articles/330778.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
mobile edge computing
active safe driving
cooperative platoon driving
cooperative adaptive cruise control
przetwarzanie mobilne
bezpieczna jazda
tempomat adaptacyjny
Opis:
Cooperative adaptive cruise control (CACC) for human and autonomous self-driving aims to achieve active safe driving that avoids vehicle accidents or traffic jam by exchanging the road traffic information (e.g., traffic flow, traffic density, velocity variation, etc.) among neighbor vehicles. However, in CACC, the butterfly effect is encountered while exhibiting asynchronous brakes that easily lead to backward shock-waves and are difficult to remove. Several critical issues should be addressed in CACC, including (i) difficulties with adaptive steering of the inter-vehicle distances among neighbor vehicles and the vehicle speed, (ii) the butterfly effect, (iii) unstable vehicle traffic flow, etc. To address the above issues in CACC, this paper proposes the mobile edge computing-based vehicular cloud of the cooperative adaptive driving (CAD) approach to avoid shock-waves efficiently in platoon driving. Numerical results demonstrate that the CAD approach outperforms the compared techniques in the number of shock-waves, average vehicle velocity, average travel time and time to collision (TTC). Additionally, the adaptive platoon length is determined according to the traffic information gathered from the global and local clouds.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 2; 213-225
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A multi-source fluid queue based stochastic model of the probabilistic offloading strategy in a MEC system with multiple mobile devices and a single MEC server
Autorzy:
Zheng, Huan
Jin, Shunfu
Powiązania:
https://bibliotekanauki.pl/articles/2055156.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
mobile edge computing
probabilistic offloading strategy
multi-source fluid queue
birth and death process
cumulative distribution function
przetwarzanie mobilne
proces narodzin i śmierci
dystrybuanta
Opis:
Mobile edge computing (MEC) is one of the key technologies to achieve high bandwidth, low latency and reliable service in fifth generation (5G) networks. In order to better evaluate the performance of the probabilistic offloading strategy in a MEC system, we give a modeling method to capture the stochastic behavior of tasks based on a multi-source fluid queue. Considering multiple mobile devices (MDs) in a MEC system, we build a multi-source fluid queue to model the tasks offloaded to the MEC server. We give an approach to analyze the fluid queue driven by multiple independent heterogeneous finite-state birth-and-death processes (BDPs) and present the cumulative distribution function (CDF) of the edge buffer content. Then, we evaluate the performance measures in terms of the utilization of the MEC server, the expected edge buffer content and the average response time of a task. Finally, we provide numerical results with some analysis to illustrate the feasibility of the stochastic model built in this paper.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 1; 125--138
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies