Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "technology forecasting" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Prognozowanie strat techniki wojsk lądowych
Forecasting technology for military trips
Autorzy:
Brzeziński, Marian
Powiązania:
https://bibliotekanauki.pl/articles/1385460.pdf
Data publikacji:
2019
Wydawca:
Polskie Wydawnictwo Ekonomiczne
Tematy:
bezpieczeństwo
technika wojskowa
strata
prognozowanie
security
military technology
loss
forecasting
Opis:
Cele artykułu jest zaproponowanie metody prognozowania strat techniki wojsk lądowych z wykorzystaniem aparatu analitycznego rachunku prawdopodobieństwa. Przedstawiono analizę strat technicznych wojsk lądowych w działaniach bojowych, istotę prognozowania strat technicznych oraz zastosowanie rozkładu Weibulla do prognozowania strat technicznych w działaniach bojowych wojsk lądowych.
The goal of the article is to propose a method for predicting losses of land forces techniques using the probability theory analytical device. The analysis of technical losses of land forces in combat operations, the essence of forecasting technical losses and the use of the Weibull distribution to forecast technical losses in combat operations of ground troops are presented.
Źródło:
Gospodarka Materiałowa i Logistyka; 2019, 5; 103-115
1231-2037
Pojawia się w:
Gospodarka Materiałowa i Logistyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod prognozowania mikrobiologicznego do modelowania wzrostu mikroflory saprofitycznej w produktach miesnych utrwalonych lizozymem w formie dimeru
Autorzy:
Rosiak, E
Kolozyn-Krajewska, D
Powiązania:
https://bibliotekanauki.pl/articles/826249.pdf
Data publikacji:
2003
Wydawca:
Polskie Towarzystwo Technologów Żywności
Tematy:
bezpieczenstwo zywnosciowe
zapewnienie jakosci
bakterie saprofityczne
zywnosc
prognozowanie mikrobiologiczne
Pseudomonas
modelowanie wzrostu
badania mikrobiologiczne
technologia zywnosci
przetwory miesne
mikrobiologia zywnosci
mikroflora saprofityczna
prognozowanie
mikroorganizmy
utrwalanie zywnosci
modele matematyczne
lizozym
food safety
quality assurance
saprophytic bacteria
food
microbiological forecasting
growth modelling
microbiological test
food technology
meat product
food microbiology
saprophytic microflora
prognosis
microorganism
food preservation
mathematical modelling
lysozyme
Opis:
Celem badań było opracowanie matematycznych modeli wzrostu ogólnej liczby drobnoustrojów oraz saprofitycznych bakterii z rodzaju Pseudomonas spp. w modelowych produktach mięsnych utrwalonych lizozymem. Badania mikrobiologiczne wykonano klasycznymi metodami płytkowymi. Do uzyskanych danych empirycznych dopasowano funkcje s-kształtne (Gompertza i logistyczną) oraz funkcje wielomianowe stopnia drugiego i trzeciego. Szacowania parametrów funkcji pierwszorzędowych dokonano z wykorzystaniem procedur iteracyjnych, wyznaczających najmniejszą wartość sumy kwadratów różnicy błędu pomiędzy wartościami empirycznymi i teoretycznymi. Szacowania parametrów modeli zbiorczych dokonano klasyczną metodą najmniejszych kwadratów. Na podstawie modeli pierwszorzędowych uzyskano parametry kinetyczne opisujące rozwój badanych grup drobnoustrojów. Modele zbiorcze pozwoliły określić wpływ badanych czynników środowiskowych na populację drobnoustrojów.
The objective of the work was to develop mathematical models of growth in the total plate count of bacteria and of saprophytic Pseudomonas spp. bacteria in model meat products preserved using lysozyme in the form of a dimer. The microbiological experiment was carried out by a traditional plate method. The experimental data were adapted to the first order models (the Gampertz and logistic functions) and to the response surface models (RSM). The Marquardt algorithm was used to evaluate parameters of the Gompertz and logistic functions. The least square method was used to assess parameters of the polynomial functions. Results of the first order models were kinetics parameters of the growth: lag time duration, growth rate, generation time, and density of population. The influence of environmental factors on the growth in the bacteria population was determined on the basis of RSM.
Źródło:
Żywność Nauka Technologia Jakość; 2003, 10, 4; 5-25
1425-6959
Pojawia się w:
Żywność Nauka Technologia Jakość
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies