Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "principal component regression" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Wielocechowa analiza wyników doświadczeń wstępnych z żytem ozimym
Multivariate analysis of data from preliminary trials with winter rye
Autorzy:
Ukalski, Krzysztof
Śmiałowski, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/2198126.pdf
Data publikacji:
2011-09-30
Wydawca:
Instytut Hodowli i Aklimatyzacji Roślin
Tematy:
analiza składowych głównych
formy mieszańcowe
formy populacyjne
plon ziarna
regresja składowych głównych
transformacja
żyto ozime
grain yield
hybrid forms
population forms
principal component analysis
principal component regression
transformation
winter rye
Opis:
Przedmiotem badań było 30 form żyta ozimego badanych w doświadczeniach wstępnych przez sześć Zakładów Hodowli Roślin oraz Zakład Roślin Zbożowych IHAR w Krakowie. Wyniki prezentowane w pracy dotyczą obiektów badanych w 2009 r. w 6 miejscowościach. Pod uwagę wzięto 10 cech: plon, MTZ, wysokość, odporność na wyleganie, przezimowanie, liczba dni do kłoszenia, liczba dni do dojrzałości, pylenie, odporność na mączniaka i rdzę brunatną. Celem pracy było: 1. zastosowanie analizy składowych głównych (PCA) na wartościach transformowanych dla cech wyrażonych w skali bonitacyjnej, 2. szczegółowe porównanie badanych form żyta przy użyciu regresji składowych głównych (PCR). Analiza składowych głównych PCA na wartościach poddanych transformacji wyjaśniła ponad 15% więcej zmienności całkowitej niż PCA na wartościach nietransformowanych dla trzech pierwszych składowych. Wyniki analizy PCR przedstawiono za pomocą wykresów przedstawiających zróżnicowanie badanych form żyta ozimego pod kątem wybranej cechy. Forma populacyjna HRSM 4 swoimi właściwościami zbliżona jest do form mieszańcowych.
The subjects of the study were 30 lines of winter rye examined in preliminary trials coordinated by the Plant Breeding and Acclimatization Institute, the Department of Cereals Crops in Cracow. The results presented in the paper concern objects examined in 6 locations in 2009. Ten traits were taken into account: grain yield, 1000 grains weight, plant height, lodging score, winter hardiness, no. of days to heading, no. of days to maturity, pollen fertility, powdery mildew score and brown rust score. The aim of the study was: firstly, the application of principal component analysis (PCA) on transformed values for traits formulated in valuation scale, secondly, detailed comparison of examined forms of winter rye using principal component regression (PCR). Principal component analysis PCA on values under transformation explained over 15% more total variation than PCA on non-transformed values for three first components. The results of PCR analysis are shown on graphs presenting diversity of examined forms of winter rye with consideration of particular traits. The population form HRSM 4 is similar, by its characteristics, to the hybrid lines.
Źródło:
Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin; 2011, 260/261; 251-262
0373-7837
2657-8913
Pojawia się w:
Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new method for detecting cross-inhibition effects in the environmental biocatalytic processes
Autorzy:
Herke, Z.
Maskow, T.
Nemeth, Z.I.
Powiązania:
https://bibliotekanauki.pl/articles/80851.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biocatalysis
microorganism
enzyme
bioremediation
inhibition
modelling
regression analysis
principal component analysis
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2015, 96, 4
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting of subjective comfort in tram using ordinal logistic regression and manifold learning
Autorzy:
Pietraszek, J.
Grzegożek, W.
Szczygieł, J.
Powiązania:
https://bibliotekanauki.pl/articles/246634.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
rail transport
vibrations
ordinal logistic regression
principal component analysis
manifold learning
Opis:
Comfort in a vehicle has a very important role to play as one of the most important dynamic performance characteristics of rail vehicles. It is the factor of ever-increasing importance, even creating a specialized branch of engineering associated with relation between human limitations and designing of machines: human–factors engineering. The vibration is known to be a major factor that affects and deteriorates ride comfort. For evaluating ride comfort in rail vehicles, there have been developed methods resulting in the creation of many standards and multiple criteria used and even standardized in different countries. One of the authors, J. Szczygieł designed and performed a passive experiment to collect data describing physical conditions of ride and associated subjective assessments of comfort. Panel of fourteen people during the tram ride made synchronous subjective assessments of comfort, assessing it on a discrete ordinal scale of 0 to 5, using electronic panels connected to the computer. At the same time computer through sensors recorded values of acceleration in three perpendicular axes. It made possible to correlate the fuzzy subjective evaluations with objective physical measurements. Because of the discrete type of fuzzy ratings of comfort, natural way of modelling is the ordinal logistic regression. The classic form of the ordinal logistic regression assumes that in the space of explanatory factors there are parallel activation hyper-planes slightly disturbed by unknown or uncontrolled noise factors. In fact, the assumption of linearity is a very strong idealization and leads to considerable misclassifications. The original space of explanatory factors is 11-dimensional with ten continuous dimensions and one discrete. Then the multivariate method, principal component analysis (PCA), was used to identify principal components, which are responsible most to the variability of the studied set. The scree plot was used to identify the number of significant PCA factors. The use of PCA revealed that the area occupied by the data set is approximately 6-dimensional. However, the dimensionality reduction of explanatory variables set did not lead to better forecasting accuracy. A more subtle analysis involving discretization techniques showed that activation hyperplanes are highly curved in the six-dimensional area identified by PCA but their dimensionality is much lower. The details of the procedure are described in the article. The article conclusion is that is necessary to introduce curvilinear coordinate system embedded into the shapes of activation hyper-planes to obtain better classification.
Źródło:
Journal of KONES; 2012, 19, 2; 403-409
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An identification source of variation on the water quality pattern in the Malacca River basin using chemometric approach
Autorzy:
Hua, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/204612.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hierarchical cluster analysis
discriminant analysis
principal component analysis
multiple linear
regression analysis
Opis:
The Malacca River basin experienced river water pollution which caused a major deterioration to the ecosystems and environmental health. This study is carried out to assess the water quality data and identify the pattern of water pollution sources in the study area, and also to develop a predictive performance of water quality in the Malacca River basin. A chemometric approach using a combination of HCA, DA, PCA, and MLR, was applied into twenty water quality variables from nine sampling stations that were collected from January until December of 2015 in the river basin. HCA pointed out three clusters, namely Cluster 1 (C1) with low pollution source, Cluster 2 (C2) with moderate pollution source, and Cluster 3 (C3) with high pollution source. In the DA analysis, the results showed 21 variables, 12 variables, and 9 variables for standard mode, forward stepwise mode, and backward stepwise mode, respectively. Meanwhile, the PCA indicated that the main source of pollutants is detected from residential, industrial, commercial, agricultural, animal livestock, as well as forest land. Among the three models developed from MLR analysis, C3 with a high pollution source is detected to be the most suitable model to be used for the prediction of Water Quality Index in the Malacca River basin. This study proposed for an effective river water quality management by having new water quality monitoring network to be designed for more practical use in order to reduce time and effort, as well as cost saving purposes.
Źródło:
Archives of Environmental Protection; 2018, 44, 4; 111-122
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Land clayey deposits compressibility investigation using principal component analysis and multiple regression tools
Autorzy:
Berrah, Yacine
Chegrouche, Aymen
Brahmi, Serhane
Boumezbeur, Abderrahmane
Powiązania:
https://bibliotekanauki.pl/articles/2201674.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
compressibility index
geotechnical parameters
principal component analysis
PCA
multiple regression models
indeks ściśliwości
parametry geotechniczne
analiza głównych składowych
regresja wielokrotna
Opis:
The settlement and compressibility magnitude of the major clayey and marly sediments in Tebessa area (N-E of Algeria) depends on several geotechnical parameters such as compression Cc and recompression Cs indices. The aim of this study was to investigate the parameters related to soil compressibility through tools of statistical analysis, which save time in comparison to multiply repeated laboratory tests. The study also adopted the principal component analysis (PCA) method to eliminate a number of uncorrelated variables that have no influence on the compressibility magnitude, or their impact is insignificant. The highest mean correlation coefficients were obtained for different contributing parameters. Multiple regression analysis has been performed to obtain the best fit model of the output Cc parameter taking into account the best correlation by adding parameters as regressors to reach the highest coefficient of regression R2 . The final obtained model of the present case study gives the best fit model with R2 of 0.92 which is a better value compared to different published models in the literature (R2 of 0.7 as maximum). The chosen input parameters using PCA combined with multiple regression analysis allow identifying the most important input parameters that noticeably affect the soil compression index, and provide with the best model for estimating the Cc index.
Źródło:
Geomatics, Landmanagement and Landscape; 2022, 4; 95--107
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying NIR spectroscopy to evaluate quality of whey protein supplements available on the Polish market
Zastosowanie spektroskopii w bliskiej podczerwieni do oceny jakości odżywek białkowych dostępnych na polskim rynku
Autorzy:
Wojcicki, K.
Powiązania:
https://bibliotekanauki.pl/articles/827095.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Technologów Żywności
Tematy:
human nutrition
supplemented diet
protein
whey protein
determination
near infrared spectroscopy
protein quality
protein content
principal component analysis
partial least squares regression
Opis:
The objective of the research study was to apply near infrared (NIR) spectroscopy to evaluate the quality of protein supplements available in the Polish shops and gyms. The evaluation was performed on the basis of the determination of the protein quantity contained in the individual samples by a Kjeldahl method and then the evaluation results were correlated with the measured NIR spectra using an appropriate chemometric method. The research material consisted of fifteen protein supplement samples for athletes, which included the following types: WPI (protein isolate), WPC (protein concentrate), WPH (protein hydrolysate), and mixtures thereof. The obtained NIR spectra of protein supplements were characterized by a similar shape of the bands. Depending on the type of protein, a different intensity of absorption of individual bands could be observed. A Principal Component Analysis (PCA) was used to distinguish the samples based on the spectra measured. Unfortunately, owing to the varying composition of the protein mixtures, it was not possible to find characteristic arrangement of the samples depending on their types. The spectra were correlated with the protein contents determined in the samples using a Partial Least Squares regression method (PLS regression) and various mathematic transformations of the NIR spectral data. The obtained regression models were analysed and the analysis results confirmed that it was possible to apply NIR spectra to estimate the content of proteins in protein supplements. The best result was obtained in a spectrum region between 9401 and 5448 cm⁻¹ and after the first derivative was applied with Multiplicate Scatter Correction (MSC) as a mathematical pre-treatment. On the basis of the results obtained, it was proved that the NIR spectra applied together with the chemometric analysis could be used to quickly evaluate the products studied.
Celem pracy było zastosowanie spektroskopii w zakresie bliskiej podczerwieni (NIR) do oceny jakości odżywek białkowych dostępnych w polskich sklepach i siłowniach. Oceny tej dokonano na podstawie wyznaczenia zawartości protein w poszczególnych odżywkach metodą Kjeldahla, a następnie skorelowaniu jej ze zmierzonymi widmami NIR, stosując odpowiednią metodę chemometryczną. Materiał do badań stanowiło piętnaście białkowych odżywek dla sportowców różnego typu: WPI (izolat białka), WPC (koncentrat białka) i WPH (hydrolizat białka) oraz ich mieszanki. Otrzymane widma NIR odżywek białkowych charakteryzowały się zbliżonym do siebie kształtem pasm. W zależności od rodzaju odżywki można było zaobserwować różną intensywność absorpcji poszczególnych pasm. Przeprowadzona analiza głównych składowych (PCA) wykorzystana została do rozróżnienia próbek na podstawie zmierzonych widm. Niestety ze względu na różny skład mieszanek białkowych nie udało się zaobserwować charakterystycznego rozmieszczenia próbek w zależności od ich rodzaju. Korelację widm z wyznaczoną zawartością protein w próbkach przeprowadzono stosując metodę regresji najmniejszych kwadratów (PLS) oraz różne przekształcenia matematyczne danych spektralnych. Analiza otrzymanych modeli regresji wykazała, że możliwe jest wykorzystane widm w bliskiej podczerwieni do przewidywania zawartości protein w odżywkach białkowych. Najlepszy rezultat otrzymano w zakresie widma 9401 ÷ 5548 cm⁻¹ oraz po zastosowaniu pierwszej pochodnej wraz z multiplikatywną korektą rozproszenia (MSC) jako przekształcenie matematyczne. Na podstawie otrzymanych wyników udowodniono, że zastosowanie widm NIR wraz z chemometryczną analizą pozwala na szybką ocenę jakości omawianych produktów.
Źródło:
Żywność Nauka Technologia Jakość; 2018, 25, 2
1425-6959
Pojawia się w:
Żywność Nauka Technologia Jakość
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Factors of Quality of Life in a Group of Selected European Union and OECD Countries
Czynniki jakości życia w grupie wybranych krajów Unii Europejskiej i OECD
Autorzy:
Drastichová, Magdaléna
Filzmoser, Peter
Powiązania:
https://bibliotekanauki.pl/articles/1840948.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Komitet Człowiek i Środowisko PAN
Tematy:
health
human development
quality of life
sustainable development
regression analysis
principal component analysis
zdrowie
rozwój człowieka
jakość życia
zrównoważony rozwój
analiza regresji
analiza głównych składowych
Opis:
This work focuses on the evaluation of the factors of quality of life in a sample of 26 countries. Quality of life is a complex, multidimensional concept, which includes various social, cultural, economic, political, demographic and environmental aspects. Regarding this, principal component analysis and regression analysis were chosen as relevant methods to analyse relationships among twenty-five variables related to quality of life, and their rela-tionships with three composite indices reflecting crucial aspects of quality of life, wellbeing and sustainability. These indices, applied as the response variables in the regression analysis, include the inequality-adjusted alter-native of the Human Development Index (IHDI), the Happy Planet Index (HPI), and Healthy Life Years (HLY). The IHDI represents an objective indicator of human development and wellbeing. HLY reflects quality of life in terms of health. The HPI combines the ecological efficiency with which human wellbeing is delivered, while it also includes a subjective measure of wellbeing. Since each of these indices represent different aspects of quality of life to a certain extent, some of the factors (represented by selected indicators) affected them in different ways. After applying a Lasso regression, nine of the 25 indicators – representing crucial factors of quality of life – were identified. Homicide rate (representing the factor of safety) affected all three indices in a negative way, whereas Years in education (representing the factor of education) and Life satisfaction – a subjective indicator of wellbeing representing the dimension of the same name, affected them positively.
Niniejsza praca koncentruje się na ocenie czynników jakości życia na próbie 26 krajów. Jakość życia to złożone, wielowymiarowe pojęcie, które obejmuje różne aspekty społeczne, kulturowe, ekonomiczne, polityczne, demograficzne i środowiskowe. W związku z tym wybrano analizę głównych składowych i analizę regresji jako odpowiednie metody analizy relacji między 25 zmiennymi odnoszącymi się do jakości życia oraz ich związków z trzema złożonymi wskaźnikami odzwierciedlającymi kluczowe aspekty jakości życia, dobrostanu i zrównoważonego rozwoju. Wskaźniki te, stosowane jako zmienne odpowiedzi w analizie regresji, obejmują skorygowaną o nierówności alternatywę wskaźnika rozwoju społecznego (IHDI), wskaźnika szczęśliwej planety (HPI) i wskaźnika lat zdrowego życia (HLY). IHDI stanowi obiektywny wskaźnik rozwoju człowieka i dobrobytu. HLY odzwierciedla jakość życia w kategoriach zdrowia. HPI łączy w sobie efektywność ekologiczną, z jaką zapewnia dobrostan człowieka, a także subiektywną miarę dobrostanu. Ponieważ każdy z tych wskaźników w pewnym stopniu reprezentuje różne aspekty jakości życia, niektóre czynniki (reprezentowane przez wybrane wskaźniki) wpływały na nie w różny sposób. Po zastosowaniu regresji Lasso zidentyfikowano dziewięć z 25 wskaźników – reprezentujących kluczowe czynniki jakości życia. Wskaźnik zabójstw (będący czynnikiem bezpieczeństwa) wpłynął negatywnie na wszystkie trzy wskaźniki, natomiast lata nauki (będące czynnikiem wykształcenia) i zadowolenie z życia – subiektywny wskaźnik dobrostanu reprezentujący wymiar o tej samej nazwie – wpłynęły na nie pozytywnie.
Źródło:
Problemy Ekorozwoju; 2021, 16, 2; 75-93
1895-6912
Pojawia się w:
Problemy Ekorozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies