Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wang, Cheng" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Temperature and Humidity Data Evaluation of Tight Sportswear During Motion Based on Intelligent Modeling
Autorzy:
Cheng, Pengpeng
Wang, Jianping
Zeng, Xianyi
Bruniaux, Pascal
Chen, Daoling
Powiązania:
https://bibliotekanauki.pl/articles/24200969.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
motion state
tight sportswear
temperature
humidity
prediction model
Opis:
A neural network structure of Long Short Term Memory (LSTM) is proposed which could be used to predict the temperaturę and humidity of other key parts from the temperature and humidity data of some parts of the human body when wearing tight sportswear, so as to realize the temperature and humidity data prediction of all key points of the human body. The temperaturę and humidity of different people wearing tights were collected by DHT sensors. The experimental results show that the LSTM neural network structure proposed has higher prediction accuracy than other algorithms, and the model evaluates the feasibility of temperature and humidity data of tights in a state of motion, which facilitates the study of dynamic thermal and humid comfort and reduces the time cost of analyzing the temperature and humidity distribution and changing the law during human movement. It will effectively promote the study of temperature and humidity changes when people wear sports tights, provide theoretical reference for the study of human skin temperature in the field of sports medicine, and provide practical guidance for the application of human skin temperature changes in sports clothing production, diagnosis and prevention of sports injuries.
Źródło:
Fibres & Textiles in Eastern Europe; 2023, 31, 3; 1--8
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent Forecasting of Automatic Train Protection System Failure Rate in China High-speed Railway
Inteligentne prognozowanie intensywności uszkodzeń automatycznego systemu ochrony pociągów kolei dużych prędkości w Chinach
Autorzy:
Kang, Renwei
Wang, Junfeng
Cheng, Jianfeng
Chen, Jianqiu
Pang, Yanzhi
Powiązania:
https://bibliotekanauki.pl/articles/301390.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
intelligent maintenance
high-speed railway
failure rate
automatic train protection system
prediction model
chaos
inteligentna konserwacja
kolej dużych prędkości
intensywność uszkodzeń
automatyczny system ochrony pociągu
model predykcyjny
Opis:
Intelligent and personalized dynamic maintenance and spare parts configuration of high-speed railway have been the main trend to guarantee the safety capability of trains. In this paper, a new Automatic Train Protection (ATP) system failure rate calculation method is proposed, and the delay time and embedded dimension are determined by C-C algorithm. Then the phase space is reconstructed from one-dimensional time series to high-dimensional space. Based on chaotic characteristics of failure rate, a short-term intelligent forecasting model of failure rate of ATP system is established. The actual failure statistics from 2010 to 2018 are used as samples to train and test the validity of the model. From prediction results, it shows that the proposed chaos prediction model has an accuracy of 99.71%, which is better than the support vector machine model. Through the intelligent prediction of failure rate, this paper solves the maintenance inflexibility and imbalance of supply and demand of spare parts configuration.
Inteligentna i spersonalizowana dynamiczna konserwacja i konfiguracja części zamiennych pociągów kolei dużych prędkości stanowią ostatnio główny trend w zakresie zapewniania bezpieczeństwa pociągów. W niniejszym artykule zaproponowano nową metodę obliczania intensywności uszkodzeń systemu Automatycznej Ochrony Pociągu (ATP), a czas opóźnienia i wymiar zanurzenia określano za pomocą algorytmu CC. Następnie, przestrzeń fazową przekształcono z jednowymiarowego szeregu czasowego do przestrzeni wielowymiarowej. Opierając się na chaotycznych charakterystykach intensywności uszkodzeń, utworzono model krótkoterminowego inteligentnego prognozowania awaryjności systemu ATP. Do uczenia modelu i weryfikacji jego trafności wykorzystano rzeczywiste dane statystyczne dotyczące awarii pociągów z lat 2010–2018. Z wyników prognoz wynika, że proponowany model predykcji, oparty na teorii chaosu, cechuje się dokładnością na poziomie 99,71%, czyli wyższą niż model maszyny wektorów nośnych. Dając możliwość inteligentnej predykcji intensywności uszkodzeń, niniejsza praca rozwiązuje problem braku elastyczności w utrzymaniu ruchu pociągów oraz braku równowagi między podażą a popytem na części zamienne.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 4; 567-576
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies