Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dobrzańska, A." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics
Autorzy:
Dobrzański, L. A.
Dobrzański, L. B.
Dobrzańska-Danikiewicz, A. D.
Powiązania:
https://bibliotekanauki.pl/articles/367488.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
powder engineering
manufacturing of powder products
manufacturing technologies thick-layer coatings using powders
dendrological matrix of the technologies potential and attractiveness
holistic augmented Industry 4.0 model
inżynieria proszkowa
produkcja produktów proszkowych
technologie wytwarzania
powłoka grubowarstwowa
matryca dendrologiczna
przemysł 4.0
Opis:
Purpose: The paper is a comprehensive review of the literature on manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics. Design/methodology/approach: Extensive literature studies on manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics have been carried out. The paper is illustrated with examples of various structure images obtained as part of research of engineering materials made by authors with powders. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: The manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics as the advanced digital production (ADP) technologies are proves the highest possible potential and relatively good attractiveness, as well as their fully exploited attractiveness or substantial development opportunities in this respect. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics are becoming very important among product manufacturing technologies. They are an essential part of powder engineering.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 99, 1; 14-41
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage
Autorzy:
Dobrzański, L. A.
Dobrzański, L. B.
Dobrzańska-Danikiewicz, A. D.
Powiązania:
https://bibliotekanauki.pl/articles/368149.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
powder engineering
conventional powders manufacturing methods
powder metallurgy
liquid phase sintering
in solid-state sintering
manufacturing of powder products
holistic augmented Industry 4.0 model
inżynieria proszkowa
konwencjonalne metody wytwarzania proszków
metalurgia proszków
faza ciekła spiekania
spiekanie w fazie stałej
produkcja produktów proszkowych
przemysł 4.0
Opis:
Purpose: Among the technologies that play a crucial role in the current stage of development of Industry 4.0 conventional powder engineering technologies are of great importance. Based on a comprehensive literature review, conventional technologies using the powders of metals, their alloys and ceramics are described. Development perspectives of the most widespread among them were indicated. Design/methodology/approach: Extensive literature studies on conventional powder engineering technologies have been carried out. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: In addition to the presentation of conventional sintering technological methods, sintering mechanisms in solid-state and liquid phase sintering which accounts for 90% of the commercial value of sintered products are presented. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them conventional powder engineering technologies play a key role in current industry development. For this reason, these technologies have been characterized in detail on the basis of available literature sources.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 98, 2; 56-85
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics
Autorzy:
Dobrzański, L. A.
Dobrzański, L. B.
Dobrzańska-Danikiewicz, A. D.
Powiązania:
https://bibliotekanauki.pl/articles/1818519.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
powder engineering
manufacturing of powder products
hybrid technologies using powders
additive manufacturing technologies using powders
dendrological matrix of the technologies potential and attractiveness
holistic augmented Industry 4.0 model
inżynieria proszkowa
produkcja wyrobów proszkowych
technologie hybrydowe z wykorzystaniem proszków
technologie wytwarzania przyrostowego z wykorzystaniem proszków
Opis:
Purpose: The paper is a comprehensive review of the literature on additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics. Design/methodology/approach: Extensive literature studies on conventional powder engineering technologies have been carried out. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: The additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics as the advanced digital production (ADP) technologies are located in the two-quarters of the dendrological matrix of technologies "wide-stretching oak" and "rooted dwarf mountain pine" respectively. It proves their highest possible potential and attractiveness, as well as their fully exploited attractiveness or substantial development opportunities in this respect. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics are becoming very important among product manufacturing technologies. They are an essential part not only of powder engineering but also of the manufacturing development according to the concept of Industry 4.0.
Źródło:
Archives of Materials Science and Engineering; 2020, 102, 2; 59--85
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage
Autorzy:
Dobrzański, L. A.
Dobrzański, L. B.
Dobrzańska-Danikiewicz, A. D.
Kraszewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/1818518.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
powder engineering
powders manufacturing methods
manufacturing technologies using powders
dendrological matrix of the technologies potential and attractiveness
holistic augmented Industry 4.0 model
inżynieria proszkowa
metody wytwarzania proszków
technologie wytwarzania z użyciem proszków
Opis:
Purpose: The paper is a literature review indicating the importance of powder engineering in the modern stage of Industry 4.0 development. 47 technologies for the manufacturing and use the powders of metal and their alloys and ceramic in the manufacturing of products are indicated. All those technologies were compared in terms of their potential and attractiveness, pointing to their development trends. The focus was solely on powder production methods. Other technologies will be discussed in other papers in the powder engineering cycle. Design/methodology/approach: The authors' considerations are based on an extensive literature study and the results of the authors' previous studies and empirical work. In order to compare the analyzed technologies, the methodology of knowledge engineering are used, including the own method of contextual matrices for comparative analysis of a large set of technologies by presenting them on a dendrological matrix. Findings: The most interesting intellectual achievements contained in the paper include presentations of the authors' original concepts regarding the augmentation of the Industry 4.0 model. Material processing technologies occupy an important place in it, among them powder engineering technologies, both conventional and additive. The most attractive and promising development technologies in powder engineering are identified. Originality/value: The originality of the paper is associated with the novelty of the approach to analysing powder engineering, an indication of its importance for the development of the Industry 4.0 idea, where progress does not depend only on the development of IT technologies. It is also not true that from among technologies only additive technologies play a key role. Using avant-garde analyses in the field of knowledge engineering, the most avant-garde technologies of powder engineering are pointed out.
Źródło:
Archives of Materials Science and Engineering; 2020, 102, 1; 13--41
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies