- Tytuł:
- Proper feedback compensators for a strictly proper plant by polynomial equations
- Autorzy:
-
Callier, F. M.
Kraffer, F. - Powiązania:
- https://bibliotekanauki.pl/articles/908450.pdf
- Data publikacji:
- 2005
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
liniowy układ stacjonarny
sprzężenie zwrotne
macierz wielomianowa
równanie wielomianowe
linear time-invariant feedback control systems
polynomial matrix systems
row-column-reduced polynomial matrices
feedback compensator design
flexible belt device - Opis:
- We review the polynomial matrix compensator equation XlDr + YlNr = Dk (COMP), e.g. (Callier and Desoer, 1982, Kučera, 1979; 1991), where (a) the right-coprime polynomial matrix pair (Nr,Dr) is given by the strictly proper rational plant right matrix-fraction P = NrD-1 r , (b) Dk is a given nonsingular stable closed-loop characteristic polynomial matrix, and (c) (Xl, Yl) is a polynomial matrix solution pair resulting possibly in a (stabilizing) rational compensator given by the left fraction C = X-1 l Yl. We recall first the class of all polynomial matrix pairs (Xl, Yl) solving (COMP) and then single out those pairs which result in a proper rational compensator. An important role is hereby played by the assumptions that (a) the plant denominator Dr is column-reduced, and (b) the closed-loop characteristic matrix Dk is row-column-reduced, e.g., monically diagonally degree-dominant. This allows us to get all solution pairs (Xl, Yl) giving a proper compensator with a row-reduced denominator Xl having (sufficiently large) row degrees prescribed a priori. Two examples enhance the tutorial value of the paper, revealing also a novel computational method.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 493-507
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki