Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Saad, Amani A." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Story Point Estimation Using Issue Reports With Deep Attention Neural Network
Autorzy:
Kassem, Haithem
Mahar, Khaled
Saad, Amani A.
Powiązania:
https://bibliotekanauki.pl/articles/2203950.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
story points
deep learning
glove
hierarchical attention networks
agile
planning poker
Opis:
Background: Estimating the effort required for software engineering tasks is incredibly tricky, but it is critical for project planning. Issue reports are frequently used in the agile community to describe tasks, and story points are used to estimate task effort. Aim: This paper proposes a machine learning regression model for estimating the number of story points needed to solve a task. The system can be trained from raw input data to predict outcomes without the need for manual feature engineering. Method: Hierarchical attention networks are used in the proposed model. It has two levels of attention mechanisms implemented at word and sentence levels. The model gradually constructs a document vector by grouping significant words into sentence vectors and then merging significant sentence vectors to create document vectors. Then, the document vectors are fed into a shallow neural network to predict the story point. Results: The experiments show that the proposed approach outperforms the state-of-the-art technique Deep-S which uses Recurrent Highway Networks. The proposed model has improved Mean Absolute Error (MAE) by an average of 16.6% and has improved Median Absolute Error (MdAE) by an average of 53%. Conclusion: An empirical evaluation shows that the proposed approach outperforms the previous work.
Źródło:
e-Informatica Software Engineering Journal; 2023, 17, 1; art. no. 230104
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies