Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "planning complexity" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
On transformation of conditional, conformant and parallel planning to linear programming
Autorzy:
Galuszka, Adam
Probierz, Eryka
Powiązania:
https://bibliotekanauki.pl/articles/1409385.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
planning
conformant planning
conditional planning
parallel planning
uncertainty
linear programming
computational complexity
Opis:
Classical planning in Artificial Intelligence is a computationally expensive problem of finding a sequence of actions that transforms a given initial state of the problem to a desired goal situation. Lack of information about the initial state leads to conditional and conformant planning that is more difficult than classical one. A parallel plan is the plan in which some actions can be executed in parallel, usually leading to decrease of the plan execution time but increase of the difficulty of finding the plan. This paper is focused on three planning problems which are computationally difficult: conditional, conformant and parallel conformant. To avoid these difficulties a set of transformations to Linear Programming Problem (LPP), illustrated by examples, is proposed. The results show that solving LPP corresponding to the planning problem can be computationally easier than solving the planning problem by exploring the problem state space. The cost is that not always the LPP solution can be interpreted directly as a plan.
Źródło:
Archives of Control Sciences; 2021, 31, 2; 375-399
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On transformation of STRIPS planning to linear programming
Autorzy:
Galuszka, A.
Powiązania:
https://bibliotekanauki.pl/articles/229963.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
planning
problem solving
block world
uncertainty
linear programming
computational complexity
Opis:
STRIPS language is a convenient representation for artificial intelligence planning problems. Planning is a task of coming up with a sequence of actions that will achieve a goal. In this work a heuristic of polynomial transformation of STRIPS planning problem to linear programming problem (LP) is presented. This is done because planning problems are hard computational problems (PSPACE- complete in general case) and LP problems are known to be computational easy. Representation of STRIPS planning as a set of equalities and inequalities based on the transformation is also proposed. The exemplary simulation shows the computational efficiency of solving planning problem with proposed transformation.
Źródło:
Archives of Control Sciences; 2011, 21, 3; 243-267
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emotion learning: solving a shortest path problem in an arbitrary deterministic environment in linear time with an emotional agent
Autorzy:
Petruseva, S.
Powiązania:
https://bibliotekanauki.pl/articles/907900.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
czynnik emocjonalny
złożoność
programowanie
sieć neuronowa
emotional agent
complexity
consequence programming
CAA neural network
planning
Opis:
The paper presents an algorithm which solves the shortest path problem in an arbitrary deterministic environment with n states with an emotional agent in linear time. The algorithm originates from an algorithm which in exponential time solves the same problem, and the agent architecture used for solving the problem is an NN-CAA architecture (neural network crossbar adaptive array). By implementing emotion learning, the linear time algorithm is obtained and the agent architecture is modified. The complexity of the algorithm without operations for initiation in general does not depend on the number of states n, but only on the length of the shortest path. Depending on the position of the goal state, the complexity can be at most O(n). It can be concluded that the choice of the function which evaluates the emotional state of the agent plays a decisive role in solving the problem efficiently. That function should give as detailed information as possible about the consequences of the agent’s actions, starting even from the initial state. In this way the function implements properties of human emotions.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 3; 409-421
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies