Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "time pattern" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Classification of EEG Signals Using Adaptive Time-Frequency Distributions
Autorzy:
Khan, N. A.
Ali, S.
Powiązania:
https://bibliotekanauki.pl/articles/221878.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Adaptive Directional Time-Frequency Distribution
EEG signals
Time-Frequency features
pattern recognition
Opis:
Time-Frequency (t-f) distributions are frequently employed for analysis of new-born EEG signals because of their non-stationary characteristics. Most of the existing time-frequency distributions fail to concentrate energy for a multicomponent signal having multiple directions of energy distribution in the t-f domain. In order to analyse such signals, we propose an Adaptive Directional Time-Frequency Distribution (ADTFD). The ADTFD outperforms other adaptive kernel and fixed kernel TFDs in terms of its ability to achieve high resolution for EEG seizure signals. It is also shown that the ADTFD can be used to define new time-frequency features that can lead to better classification of EEG signals, e.g. the use of the ADTFD leads to 97.5% total accuracy, which is by 2% more than the results achieved by the other methods.
Źródło:
Metrology and Measurement Systems; 2016, 23, 2; 251-260
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja wzorców w finansowych szeregach czasowych z wykorzystaniem hierarchicznych metod grupowania na przykładzie kursu BTC/PLN
Pattern recognition in financial time series using hierarchical clustering. The case of BTC/PLN exchange rate prediction
Autorzy:
Kądziołka, K.
Powiązania:
https://bibliotekanauki.pl/articles/91503.pdf
Data publikacji:
2016
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
bitcoin
grupowanie szeregów czasowych
rozpoznawanie wzorców
Bitcoin
time series clustering
pattern recognition
Opis:
W artykule przedstawiono zastosowanie metody Warda do identyfikacji wzorców w finansowych szeregach czasowych, na przykładzie kursu waluty kryptograficznej bitcoin. Wykorzystując zidentyfikowane wzorce, generowano prognozy zmian kursu w analizowanym szeregu dla danych zbioru testowego, które nie zostały wykorzystane w procesie identyfikacji wzorców. Przeciętny absolutny oraz maksymalny błąd prognozy na danych zbioru testowego był niewielki, natomiast zgodność kierunku zmian kursu BTC/PLN na zbiorze testowym wynosiła tylko 60%.
The aim of this article was to present the use of Ward’s method to identify patterns in BTC/PLN exchange rate. Identified patterns were used to predict BTC/PLN movement direction. Mean absolute percentage error and maximal percentage error on the test set were small, but the movement direction was correctly predicted only in 60% of cases.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2016, 10, 14; 37-48
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of Sign Language from High Resolution Images Using Adaptive Feature Extraction and Classification
Autorzy:
Csóka, Filip
Polec, Jaroslav
Csóka, Tibor
Kačur, Juraj
Powiązania:
https://bibliotekanauki.pl/articles/226004.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sign language
gesture
sign
recognition
CNN
LoG
real-time
pattern recognition
machine learning
Opis:
A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-the-art in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN). The recognition rate of our algorithm was verified on real-life data.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 2; 303-308
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification in the Gabor time-frequency domain of non-stationary signals embedded in heavy noise with unknown statistical distribution
Autorzy:
Świercz, E.
Powiązania:
https://bibliotekanauki.pl/articles/907771.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sygnał niestacjonarny
klasyfikacja sygnału
rozpoznawanie obrazów
transformator czas-częstotliwość
non-stationary signals
signal classification
pattern recognition
time-frequency transforms
Opis:
A new supervised classification algorithm of a heavily distorted pattern (shape) obtained from noisy observations of nonstationary signals is proposed in the paper. Based on the Gabor transform of 1-D non-stationary signals, 2-D shapes of signals are formulated and the classification formula is developed using the pattern matching idea, which is the simplest case of a pattern recognition task. In the pattern matching problem, where a set of known patterns creates predefined classes, classification relies on assigning the examined pattern to one of the classes. Classical formulation of a Bayes decision rule requires a priori knowledge about statistical features characterising each class, which are rarely known in practice. In the proposed algorithm, the necessity of the statistical approach is avoided, especially since the probability distribution of noise is unknown. In the algorithm, the concept of discriminant functions, represented by Frobenius inner products, is used. The classification rule relies on the choice of the class corresponding to the max discriminant function. Computer simulation results are given to demonstrate the effectiveness of the new classification algorithm. It is shown that the proposed approach is able to correctly classify signals which are embedded in noise with a very low SNR ratio. One of the goals here is to develop a pattern recognition algorithm as the best possible way to automatically make decisions. All simulations have been performed in Matlab. The proposed algorithm can be applied to non-stationary frequency modulated signal classification and non-stationary signal recognition.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 135-147
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies