Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feature selection" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Local embedding and dimensionality reduction in detection of skin tumor tissue
Autorzy:
Michalak, M.
Świtoński, A.
Powiązania:
https://bibliotekanauki.pl/articles/333429.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
analiza wielospektralna
redukcja wymiarowości
selekcja cech
pattern recognition
multispectral analysis
dimensionality reduction
feature selection
Opis:
This article shows the limitation of the usage of dimensionality reduction methods. For this purpose three algorithms were analyzed on the real medical data. This data are multispectral images of human skin labeled as tumor or non-tumor regions. The classification of new data required the special algorithm of new data mapping that is also described in the paper. Unfortunately, the final conclusion is that this kind of local embedding algorithms should not be recommended for this kind of analysis and prediction.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 19; 59-65
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selection of the most important components from multispectral images for detection of tumor tissue
Autorzy:
Michalak, M.
Świtoński, A.
Stawarz, M.
Powiązania:
https://bibliotekanauki.pl/articles/951663.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazów
analiza wielospektralna
obniżenie wymiarowości
wybór funkcji
pattern recognition
multispectral analysis
dimensionality reduction
feature selection
Opis:
The problem raised in this article is the selection of the most important components from multispectral images for the purpose of skin tumor tissue detection. It occured that 21 channel spectrum makes it possible to separate healthy and tumor regions almost perfectly. The disadvantage of this method is the duration of single picture acquisition because this process requires to keep the device very stable. In the paper two approaches to the problem are presented: hill climbing strategy and some ranking methods.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 303-308
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligence in manufacturing systems: the pattern recognition perspective
Autorzy:
Zaremba, M. B.
Powiązania:
https://bibliotekanauki.pl/articles/971032.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
Intelligent Manufacturing Systems
pattern recognition
computational intelligence
neural networks
distributed systems
spatial filtering
feature selection
dimensionality reduction
Opis:
The field of Intelligent Manufacturing Systems (IMS) has been generally equated with the use of Artificial Intelligence and Computational Intelligence methods and techniques in the design and operation of manufacturing systems. Those methods and techniques are now applied in many different technological domains to deal with such pervasive problems as data imprecision and nonlinear system behavior. The focus in IMS is now shifting to a broader understanding of the intelligent behavior of manufacturing systems. The questions debated by researchers today relate more to what kind and what level of adaptability to instill in the structure and operation of a manufacturing system, with the discussions increasingly gravitating to the issue of system self-organization. This paper explores the changing face of IMS from the perspective of the pattern recognition domain. It presents design criteria for techniques that will allow us to implement manufacturing systems exhibiting adaptive and intelligent behaviour. Examples are given to show how incorporating pattern recognition capabilities can help us build more intelligence and self-organization into the manufacturing systems of the future.
Źródło:
Control and Cybernetics; 2010, 39, 1; 233-258
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A pattern recognition approach to Emery-Dreifuss muscular dystrophy (EDMD) study
Autorzy:
Sokołowska, B.
Jóźwik, A.
Niebroj-Dobosz, I. M.
Hausmanowa-Petrusewicz, I.
Powiązania:
https://bibliotekanauki.pl/articles/332948.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
pattern recognition
feature selection
pair-wise linear classifier
metalloproteinases and their tissue inhibitors
Emery-Dreifuss muscular dystrophy
rozpoznawanie obrazów
wybór funkcji
metaloproteinaza
dystrofia mięśniowa
Opis:
The algorithms of pattern recognition were used for differentiation between two forms of Emery-Dreifuss muscular dystrophy (EDMD), i.e. autosomal-dominant laminopathy (AD-EDMD) and Xlinked emerynopathy (X-EDMD). A set of some matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in serum of EDMD patients and healthy subjects were treated as features. In concluding MMPs and TIMPs levels are helpful to identifying the EDMD patients and the disease progress.
Źródło:
Journal of Medical Informatics & Technologies; 2014, 23; 165-172
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some problems with construction of the k-NN classifier for recognition of an experimental respiration pathology
Autorzy:
Jóźwik, A.
Sokołowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/332910.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
klasyfikacja nadzorowana
zasada k-NN
wybór funkcji
oddychanie
wentylacja
paraliż
przepona
pattern recognition
supervised classification
k-NN rule
feature selection
respiration
ventilation
paralysis
diaphragm
Opis:
An objective of the work is to demonstrate some difficulties with construction of a classifier based on the k-NN rule. The standard k-NN classifier and the parallel k-NN classifier have been chosen as the two most powerful approaches. This kind of classifiers has been applied to automatic recognition of diaphragm paralysis degree. The classifier construction consists in determination of the number of nearest neighbors, selection of features and estimation of the classification quality. Three classes of muscle pathology, including the control class, and five ventilatory parameters are taken into account. The data concern a model of the diaphragm pathology in a cat. The animals were forced to breathe in three different experimental situations: air, hypercapnic and hypoxic conditions. A separate classifier is constructed for each kind of the mentioned situations. The calculation of the misclassification rate is based on the leave one out and on the testing set method. Several computational experiments are suggested for the correct feature selection, the classifier type choice and the misclassification probability estimation.
Źródło:
Journal of Medical Informatics & Technologies; 2002, 3; MI89-97
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonparametric methods of supervised classification
Autorzy:
Jóźwik, A.
Powiązania:
https://bibliotekanauki.pl/articles/333226.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
pattern recognition
feature selection
k-NN rules
pair-wise classifier
artificial features
linear classifier
reference set size reduction
rozpoznawanie wzorca
wybór funkcji
reguła k-NN
sztuczne cechy
klasyfikator liniowy
Opis:
Selected nonparametric methods of statistical pattern recognition are described. A part of them form modifications of the well known k-NN rule. To this group of the presented methods belong: a fuzzy k-NN rule, a pair-wise k-NN rule and a corrected k-NN rule. They can improve classification quality as compared with the standard k-NN rule. For the cases when these modifications would offer to large error rates an approach based on class areas determination is proposed. The idea of class areas can be also used for construction of the multistage classifier. A separate feature selection can be performed in each stage. The modifications of the k-NN rule and the methods based on determination class areas can be too slow in some applications, therefore algorithms for reference set reduction and condensation, for simple NN rule, are proposed. To construct fast classifiers it is worth to consider also a pair-wise linear classifiers. The presented idea can be used as in the case when the class pairs are linearly separable as well as in the contrary case.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 21-32
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The pair-wise linear classifier and the k-NN rule in application to ALS progression differentiation
Autorzy:
Sokołowska, B.
Jóźwik, A.
Niebroj-Dobosz, I.
Janik, P.
Powiązania:
https://bibliotekanauki.pl/articles/333011.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie wzorców
wybór funkcji
klasyfikator liniowy
zasada k-NN
biomarkery
stwardnienie zanikowe boczne
pattern recognition
feature selection
linear classifier
k-NN rule
pair-wise classifier
biomarkers
amyotrophic lateral sclerosis
Opis:
The two kinds of classifier based on the k-NN rule, the standard and the parallel version, were used for recognition of severity of ALS disease. In case of the second classifier version, feature selection was done separately for each pair of classes. The error rate, estimated by the leave one out method, was used as a criterion as for determination the optimum values of k's as well as for feature selection. All features selected in this manner were used in the standard and in the parallel classifier based on k-NN rule. Furthermore, only for the verification purpose, the linear classifier was applied. For this kind of classifier the error rates were calculated by use the training set also as a testing one. The linear classifier was trained by the error correction algorithm with a modified stop condition. The data set concerned with the healthy subjects and patients with amyotrophic lateral sclerosis (ALS). The set of several biomarkers such as erythropoietin, matrix metalloproteinases and their tissue inhibitors measured in serum and cerebrospinal fluid (CSF) were treated as features. It was shown that CSF biomarkers were very sensitive for the ALS progress.
Źródło:
Journal of Medical Informatics & Technologies; 2012, 20; 79-83
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies