- Tytuł:
- Single spiking neuron multi-objective optimization for pattern classification
- Autorzy:
-
Juarez-Santini, Carlos
Ornelas-Rodriguez, Manuel
Soria-Alcaraz, Jorge Alberto
Rojas-Domínguez, Alfonso
Puga-Soberanes, Hector J.
Espinal, Andrés
Rostro-Gonzalez, Horacio - Powiązania:
- https://bibliotekanauki.pl/articles/385022.pdf
- Data publikacji:
- 2020
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
- Tematy:
-
multi-objective optimization
spiking neuron
pattern classification - Opis:
- As neuron models become more plausible, fewer computing units may be required to solve some problems; such as static pattern classification. Herein, this problem is solved by using a single spiking neuron with rate coding scheme. The spiking neuron is trained by a variant of Multi-objective Particle Swarm Optimization algorithm known as OMOPSO. There were carried out two kind of experiments: the first one deals with neuron trained by maximizing the inter distance of mean firing rates among classes and minimizing standard deviation of the intra firing rate of each class; the second one deals with dimension reduction of input vector besides of neuron training. The results of two kind of experiments are statistically analyzed and compared again a Mono-objective optimization version which uses a fitness function as a weighted sum of objectives.
- Źródło:
-
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 1; 73-80
1897-8649
2080-2145 - Pojawia się w:
- Journal of Automation Mobile Robotics and Intelligent Systems
- Dostawca treści:
- Biblioteka Nauki