- Tytuł:
- [r, s, t]-colourings of paths
- Autorzy:
-
Salvador Villa, M.
Schiermeyer, I. - Powiązania:
- https://bibliotekanauki.pl/articles/255523.pdf
- Data publikacji:
- 2007
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
total colouring
paths - Opis:
- The concept of [r, s, t]-colourings was recently introduced by Hackmann, Kemnitz and Marangio [3] as follows: Given non-negative integers r, s and t, an [r, s, t]-colouring of a graph G = (V(G), E(G)) is a mapping c from V(G) ∪ E(G) to the colour set {1, 2,..., k} such that c(vi) - c(vj) ≥ r for every two adjacent vertices vi, vj, c(ei) - c(ej) ≥ s for every two adjacent edges ei, ej, and c(vi) - c(ej) ≥ t for all pairs of incident vertices and edges, respectively. The [r, s, t]-chromatic number Xr,s,t(G) of G is defined to be the minimum k such that G admits an [r, s, t]-colouring. In this paper, we determine the [r, s, t]-chromatic number for paths.
- Źródło:
-
Opuscula Mathematica; 2007, 27, 1; 131-149
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki