- Tytuł:
- Evolutionary algorithm for selecting dynamic signatures partitioning approach
- Autorzy:
-
Zalasiński, Marcin
Laskowski, Łukasz
Niksa-Rynkiewicz, Tacjana
Cpałka, Krzysztof
Byrski, Aleksander
Przybyszewski, Krzysztof
Trippner, Paweł
Dong, Shi - Powiązania:
- https://bibliotekanauki.pl/articles/2147146.pdf
- Data publikacji:
- 2022
- Wydawca:
- Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
- Tematy:
-
identity verification
dynamic signature
hybrid partitions
partitions’ selection
evolutionary algorithm - Opis:
- In the verification of identity, the aim is to increase effectiveness and reduce involvement of verified users. A good compromise between these issues is ensured by dynamic signature verification. The dynamic signature is represented by signals describing the position of the stylus in time. They can be used to determine the velocity or acceleration signal. Values of these signals can be analyzed, interpreted, selected, and compared. In this paper, we propose an approach that: (a) uses an evolutionary algorithm to create signature partitions in the time and velocity domains; (b) selects the most characteristic partitions in terms of matching with reference signatures; and (c) works individually for each user, eliminating the need of using skilled forgeries. The proposed approach was tested using Biosecure DS2 database which is a part of the DeepSignDB, a database with genuine dynamic signatures. Our simulations confirmed the correctness of the adopted assumptions.
- Źródło:
-
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 4; 267--279
2083-2567
2449-6499 - Pojawia się w:
- Journal of Artificial Intelligence and Soft Computing Research
- Dostawca treści:
- Biblioteka Nauki